NEW CENTURY MATHS 11 MATHEMATICS STANDARD (PATHWAY 2)

FULLY WORKED SOLUTIONS

Practice paper 2

Section 1

Question 1

Out of the three cards left, the 8 and 10 are even. $\therefore \frac{2}{3}$

∴ C

Question 2

$$P(TTT) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

∴ C

Question 3

% error =
$$\frac{0.05}{35.6} \times 100\%$$

= 0.1404...%

∴ A

Question 4

$$\frac{2194}{2170} \times 60 = 60.66 \,\text{min}$$

= 1 hour and 1 min

∴ B

Question 5

Energy used =
$$18 \times 6 \times 365$$

= $39 420$
= 39.42 kWh
 $\therefore \text{ C}$

Question 6

Cost =
$$780 \times 24.25 \text{ c}$$

= 18915 c
= \$189.15
∴ B

Question 7

Number of days =
$$7 + 31 + 30 + 24$$

= 92

Daily water usage =
$$\frac{42.7 \text{ kL}}{92 \text{ days}}$$

= $\frac{42700 \text{ L}}{92 \text{ days}}$
= $464.13...$

∴ C

Question 8

$$100\% - 30\% = 70\%$$

∴ B

Question 9

$$(4.2 \times 10^5) \times (3.5 \times 10^{-2}) = 1.47 \times 10^4$$

 $\approx 1.5 \times 10^4$

∴ D

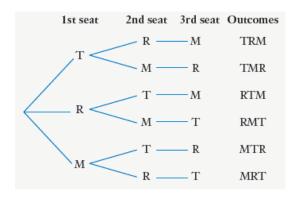
Question 10

Expected no. green
$$=\frac{1}{6} \times 100$$

= 16.66...

∴ B

Section 2


Question 11

a i Water usage =
$$$37.86 \div $2.115$$

= $17.90...$
 $\approx 17.9 \text{ kL}$

ii Total of Jeremy's water bill =
$$\$37.86 + \$41.39 + \$162.88 + \$11.58 + 21 \times \$1.70$$

= $\$289.41$

b
$$A \approx \frac{h}{2}(d_f + d_l)$$

= $\frac{24}{2}(16.7 + 32.6) + \frac{24}{2}(32.6 + 12.3)$
= 1130.4
 $\approx 1130 \text{ m}^2$

 \therefore The approximate area is 1130 m².

ii P(Max in middle) = P(TMR and RMT)
$$= \frac{2}{6}$$

$$= \frac{1}{3}$$

iii P(Rose left of Tiffany) = P(RTM, RMT, MRT)
=
$$\frac{3}{6}$$

= $\frac{1}{2}$

Question 12

a i Last 2 rows:

						6 + 5 = 11
6	1 + 6 = 7	2 + 6 = 8	3 + 6 = 9	3 + 6 = 9	5 + 6 = 11	6 + 6 = 12

- ii There are 36 possible outcomes.
- iii Of the possible outcomes six of them are 6.

$$\therefore P(6) = \frac{6}{36}$$
$$= \frac{1}{6}$$

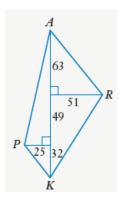
iv Of the possible outcomes 20 of them are even.

$$\therefore P(\text{even}) = \frac{20}{36}$$
$$= \frac{5}{9}$$

b Need same units: 15 mm = 0.015 m.

$$V = Ah$$

= 300 m² × 0.015 m
= 4.5 m³
= 4500 L


Radius =
$$\frac{12\ 104}{2}$$
 = 6052
Volume = $\frac{4}{3}\pi \times 6052^3 \approx 9.285 \times 10^{11} \text{ km}^3$
Surface area = $4\pi \times 6052^2$

=
$$4.60264...\times10^8 \text{ km}^2$$

= $4.60264\times10^{10} \text{ ha}$
 $\approx 4.603\times10^{10} \text{ ha}$

Question 13

а

AK is the base for both triangles.

$$AK = 63 + 49 + 32 = 144$$

$$A = \frac{1}{2}bh$$
=\frac{1}{2} \times 144 \times 25 + \frac{1}{2} \times 144 \times 51
= 5472 m²

$$A = \frac{\theta}{360} \times \pi r^2$$
$$= \frac{150}{360} \times \pi \times 18^2$$
$$= 424.115... \text{ m}^2$$
$$\approx 424 \text{ m}^2$$

ii
$$P = r + r + \frac{\theta}{360} \times 2\pi r$$

= $18 + 18 + \frac{150}{360} \times 2 \times \pi \times 18$
= $36 + 47.12...$
= $83.12...$ cm
 ≈ 83 cm

i C

1st digit	2nd digit	Outcomes
	2	72 🗸
, 7 ←	3	73
	6	76
	7	27 🗸
/ _ 2 <	3	23
	6	26
	7	37
3 <	2	32
	6	36 🗸
	7	67
` 6 <	2	62
	3	63 🗸

ii

ii P(divisible by 3) = P(72, 27, 36, 63)
=
$$\frac{4}{12}$$

= $\frac{1}{3}$