
NEW CENTURY MATHS 11 MATHEMATICS STANDARD (PATHWAY 2)

FULLY WORKED SOLUTIONS

Chapter 7

SkillCheck

Question 1

Question 2

x	-1	0	1	2
у	5	7	9	11

b

а

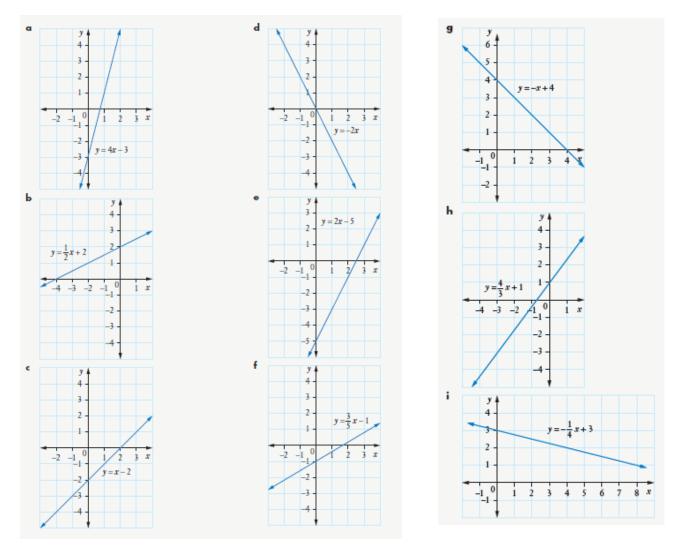
x	-1	0	1	2
у	-3	-4	-5	-6

y = mx + c $5 = 3 \times 2 + c$ 5 = 6 + cc = -1

Question 4

а	y = kx	b	y = kx
	$= 0.7 \times 4$		$10 = k \times 2.5$
	= 2.8		$k = \frac{10}{2.5}$

= 4


а	i	$V = -450 \times 3 + 2575$ = 1225
	ii	$V = -450 \times 4.2 + 2575$ = 685
b	i	1450 = -450t + 2575
		$-1125 = -450t$ $t = \frac{-1125}{-450}$ $= 2.5$
	ii	10 = -450t + 2575
		-2565 = -450t
		$t = \frac{-2565}{-450}$
		<i>t</i> = 5.7

Exercise 7.01 Graphing linear functions

Question 1

Using y = mx + c:

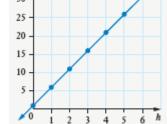
a y=3x+7b y=-2x+1c y=x-1d $y=\frac{1}{3}x-\frac{1}{2}$ e $y=-\frac{5}{4}x$ f y=5

m = 3 $\therefore D$

a
$$m = \frac{3 - (-1)}{0 - (-2)} = \frac{4}{2} = 2$$

 $c = 3$
 $\therefore y = 2x + 3$
b $m = \frac{2 - (-1)}{1 - 0} = \frac{3}{1} = 3$
 $c = -1$
 $\therefore y = 3x - 1$
c $m = \frac{4 - 0}{1 - 0} = \frac{4}{1} = 4$
 $c = 0$
 $\therefore y = 3x - 1$
c $m = \frac{4 - 0}{1 - 0} = \frac{4}{1} = 4$
 $c = 0$
 $\therefore y = -x$
h $m = \frac{1 - (-2)}{4 - 0} = \frac{3}{4}$
 $c = -2$
 $\therefore y = -2x + 2$
i $m = \frac{0 - (-3)}{3 - 0} = \frac{3}{3} = 1$
e $m = \frac{0 - 1}{1 - 0} = \frac{-1}{1} = -1$
 $\therefore y = -x + 1$

Exercise 7.02 The gradient formula


а	$\frac{5-1}{4-2} = \frac{4}{2} = 2$	f	$\frac{4\!-\!19}{14\!-\!11}\!=\!\frac{-\!15}{3}\!=\!-5$
b	$\frac{0-2}{2-0} = \frac{-2}{2} = -1$	g	$\frac{6-3}{4-0} = \frac{3}{4}$
С	$\frac{15-3}{11-5} = \frac{12}{6} = 2$	h	$\frac{22-10}{9-6} = \frac{12}{3} = 4$
d	$\frac{6-8}{10-6} = \frac{-2}{4} = -\frac{1}{2}$	i	$\frac{7-3}{19-1} = \frac{4}{18} = \frac{2}{9}$
е	$\frac{9-2}{9-4} = \frac{7}{5}$		
Ques	tion 2		
а	$\frac{29 - (-1)}{10 - 0} = \frac{30}{10} = 3$	d	$\frac{-7-7}{8-1} = \frac{-14}{7} = -2$
b	$\frac{56-1}{12-1} = \frac{55}{11} = 5$	е	$\frac{20 - (-4)}{40 - 0} = \frac{24}{40} = \frac{3}{5}$
С	$\frac{8-3}{20-0} = \frac{5}{20} = \frac{1}{4}$	f	$\frac{-3-4}{16-2} = \frac{-7}{14} = -\frac{1}{2}$

$$81 = 5h + 1$$

$$80 = 5h$$

$$h = \frac{80}{5}$$

$$= 16$$
N
$$35 = 16$$
N

Question 2

a
$$m = \frac{1222 - 102}{15 - 1} = \frac{1120}{14} = 80$$

 $\therefore C = mt + c$
 $102 = 80 \times 1 + c$
 $102 = 80 + c$
 $c = 22$
 $\therefore C = 80t + 22$
b C

c
$$C = 80t + 22$$

= $80 \times 18 + 22$
= 1462 c
= $$14.62$

22, starting cost of call (at 0 min) in cents d

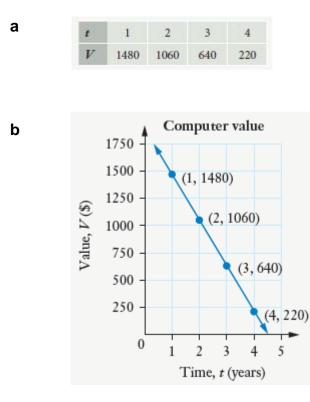
5h + 1

e Cost of 5 min call:
$$C = 422$$
 c
Cost of 2 min call: $C = 182$ c
Cost of extra 3 mins = $422-182$
= 240
 \therefore \$2.40 extra

f \$5.82 = 582 c

$$\therefore 582 = 80t + 22$$

 $560 = 80t$
 $t = \frac{560}{80}$
= 7 minutes


a dependent

b
$$m = \frac{198 - 36}{44 - 8} = \frac{162}{36} = 4.5$$

 $\therefore S = mn + c$
 $198 = 4.5 \times 44 + c$
 $198 = 198 + c$
 $c = 0$
 $\therefore S = 4.5n$

- **c** 4.5 runs/over
- **d** 0, the number of runs scored after 0 overs

e i
$$S = 4.5 \times 21$$

 $= 94.5$
 ≈ 95
ii $S = 4.5 \times 50$
 $= 225$
f i $54 = 4.5n$
 $n = \frac{54}{4.5}$
 $= 12$
ii $180 = 4.5n$
 $n = \frac{180}{4.5}$
 $= 40$

g Weaker batters bat later, with lower run rate.

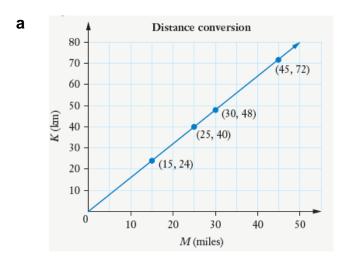
- **c** Rate of depreciation in dollars per year
- d $V = -420 \times 2.5 + 1900$ = 850
- **e** \$1900
- **f** *V* becomes negative i.e. it is less than zero.

g
$$0 = -420 \times t + 1900$$

420t = 1900 $t = \frac{1900}{420}$ = 4.523... \approx 4.5 years

Question 5

a
$$P = 50 + 3n$$


b *n*

c \$50, the base pay

d $P = 3 \times 28 + 50$ = \$134

e 98 = 3n + 50

$$48 = 3n$$
$$n = \frac{48}{3}$$
$$= 16$$

b
$$m = \frac{72 - 24}{45 - 15} = \frac{48}{30} = 1.6$$

 $\therefore K = 1.6M + c$
 $72 = 1.6 \times 45 + c$
 $72 = 72 + c$
 $c = 0$
 $\therefore K = 1.6M$

- **c** 0, 0 miles = 0 km
- **d** 1.6, the number of kilometres in 1 mile

e i
$$K = 1.6M$$

 $= 1.6 \times 100$
 $= 160 \text{ km}$
ii $100 = 1.6M$

$$M = \frac{100}{1.6}$$

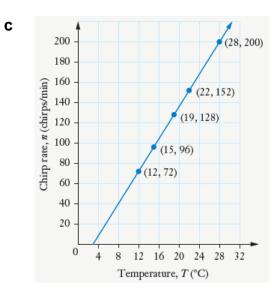
= 62.5 miles

- f i about 19 km
 - ii about 13 miles

С а $m = \frac{25.2 - 8.4}{30 - 6} = \frac{16.8}{24} = 0.7$ b $\therefore C = md + c$ $25.2 = 0.7 \times 30 + c$ 25.2 = 21 + cc = 4.2C = 0.7d + 4.2С d 5

extra cost =
$$0.7 \times 5$$

= \$3.50


e i
$$C = 0.7 \times 20 + 4.2$$

 $= \$18.20$
ii $C = 0.7 \times 0 + 4.2$
 $= \$4.20$
f $C = 0.7d + 4.2$
 $37.80 = 0.7d + 4.2$
 $33.60 = 0.7d$
 $d = \frac{33.60}{0.7}$

$$= 48 \text{ km}$$

Question 8

independent а

b
$$m = \frac{200 - 72}{28 - 12} = \frac{128}{16} = 8$$
$$\therefore n = mT + c$$
$$200 = 8 \times 28 + c$$
$$200 = 224 + c$$
$$c = -24$$
$$\therefore n = 8T - 24$$

- d chirp rate $= 8 \times 2 = 16$: increase by 16 chirps/min
- $n = 8 \times 26 24$ = 184 chirps/min

f
$$144 = 8T - 24$$

 $168 = 8T$
 $T = \frac{168}{8}$
 $= 21^{\circ}C$

-24, 'chirp rate cannot be negative. g The number of chirps per minute cannot be below zero.

е

Exercise 7.04 Direct linear variation

Question 1

x	1	4	6	10	11	15
У	3.5	14	21	35	38.5	52.5

Question 2

а	$k = \frac{55}{20}$	c 9	$9 = 2.75 \times r$
a	$\kappa = \frac{1}{20}$	r	$=\frac{99}{2.75}$
	= 2.75		2.75
	$\therefore d = 2.75r$	r	= 36 revolutions

b
$$d = 2.75 \times 33$$

= 90.75 m

Question 3

2	$_{k} = 147$	С	833 = 5.88d
а	$k = \frac{147}{25}$		_d – 833
	= 5.88		$d = \frac{833}{5.88}$
	$\therefore p = 5.88d$		$=141\frac{2}{3}$ m
b	$p = 5.88 \times 40$		

= 235.2 kPa

Question 4

a
$$F = kd$$

 $600 = k \times 250$
 $k = \frac{600}{250}$

$$= 2.4$$
$$\therefore F = 2.4d$$

b $F = 2.4 \times 3250$ = 7800 kg

a
$$y = kx$$

 $118.4 = k \times 74$
 $k = \frac{118.4}{74}$
 $= 1.6$
 $\therefore y = 1.6x$
b $y = 1.6 \times 60$
 $= 96$ km/h
c $120 = 1.6x$
 $x = \frac{120}{1.6}$
 $= 75$ miles/h

Question 6

Drops 1.6° per min.

$$\therefore \frac{10}{1.6} = 6.25 \text{ min}$$
$$\therefore \text{ A}$$

Question 7

a
$$V = kt$$

 $320 = k \times 5$
 $k = \frac{320}{5}$
 $= 64$

b Increase in water volume per minute

c V = 64t= 64×8 = 512 L

d
$$V = 64t$$
$$960 = 64t$$
$$t = \frac{960}{64}$$
$$= 15 \text{ min}$$

a
$$\frac{45}{9.75} \times 26 = 120$$
 mins or 2 hours

The marathon runner cannot continue to run forever and keep travelling more distance; b he needs to rest.

Question 9

M = kE $27.4 = k \times 72$ $k = \frac{27.4}{72}$ = 0.380... $\therefore M = 0.380...E$ $M = 0.380... \times 60$ а = 22.83... ≈22.8 kg

b
$$32 = 0.380...E$$

 $E = \frac{32}{0.380...}$
 $= 84.08...$
 $\approx 84.1 \text{ kg}$

Question 10

11.25 L/h

 $\frac{100}{11.25} = 8.88...$ hours \approx 8 hours 53 min

Question 11

$\frac{1800}{36}$	= 50 kilobytes/second
а	$\frac{3000}{100} = 60$ seconds

60 seconds 50

 $50 \times 80 = 4000$ kilobytes b

125N per 1 cm

$$\therefore \frac{5000}{125} = 40 \text{ cm}$$
$$\therefore \text{ B}$$

Question 13

a
$$m = \frac{(325-0)}{(250-0)} = \frac{325}{250}$$

= 1.3
 $\therefore S = 1.3h$
b $S = 1.3 \times 244$
= 317.2 cm
c $120 = 1.3h$
 $h = \frac{120}{1.3}$
= 92.30...
 ≈ 92 cm

Question 14

 $\frac{49}{5} = 9.8 \text{ m/s}$ **a** 9.8×12=117.6 m/s **b** $\frac{175}{9.8} = 17.857...$

- **b** $\frac{17.857.}{9.8} = 17.857.$
- **c** This model loses accuracy as time becomes greater. An object dropped under gravity will accelerate until it reaches terminal velocity or hits the ground.

Exercise 7.05 Conversion graphs

Question 1

- **a** 107 cm
- **b** 5.9 ft
- **c i** 61 cm
 - **ii** 76 cm
 - **iii** 182 cm
- **d** Answers will vary.

Question 2

а	A\$127	d	A\$75
b	A\$52	е	A\$36
С	A\$110	f	A\$60

Question 3

а	Look up $\ensuremath{\in} 12$, get $\approx A$ \$17.3 $\rightarrow \ensuremath{\in} 120 \approx A$ \$1.73
b	Look up \Subset 0, get \approx A $\$115 \rightarrow \textcircled{0.80} \approx$ A $\$1.15$
С	Look up $\mathfrak{S}4$, get $\approx A\$49 \rightarrow \mathfrak{S}3.40 \approx A\4.90
d	Look up \pounds 2.5, get $\approx A$ \$18 $\rightarrow \pounds$.25 $\approx A$ \$1.80

- **a** €17
- **b** €53
- **c** €22
- **d** €90
- **e** €75
- f Look up A\$75, get $\approx \textcircled{5}2 \rightarrow A$ \$7.50 $\approx \textcircled{5}.20$

(0,0) (100,144) $m = \frac{144}{100} = 1.44$

This represents the number of A\$ per €, i.e., €1 equals A\$1.44.

Question 6

i. а 72 kg ii 56 kg iii 80 kg b i 185 cm ii 159 cm iii 193 cm (165, 62)(185, 75)С

$$m = \frac{75 - 62}{185 - 165} = \frac{13}{20} = 0.65$$

This gradient represents the rate of change of weight per height in kg/cm.

Question 7

i \$51 а ii \$24 iii \$70 b i \$29 ii \$94 iii \$63 (40, 34)(106, 90)С $m = \frac{90 - 34}{106 - 40} = \frac{56}{66} = 0.85$

The gradient value represents the discount price as a proportion of the marked price.

d C

а	i	41 kg
	ii	62 kg
	iii	73 kg
b	i	88 lb
	ii	140 lb
	iii	198 lb
с	(0,0)	(175,80)
	$m = \frac{8}{1}$	$\frac{80-0}{75-0}$

$$n = \frac{175 - 0}{175 - 0} = \frac{80}{175} = 0.457...$$

 \therefore The conversion rate is 0.46 kg/lb.

$$m = \frac{48 - 4}{18 - 7}$$
$$= \frac{44}{11}$$
$$= 4$$
$$\therefore P = 4n + c$$
$$48 = 4 \times 18 + c$$
$$48 = 72 + c$$
$$c = -24$$
$$\therefore P = 4n - 24$$

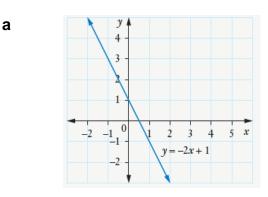
а

b 4, increase in pocket money in dollars per year of age.

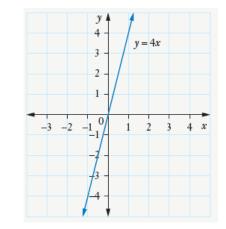
c
$$P = 4 \times 16 - 24$$

= 40

Amount of pocket money = 40.


d
$$P = 4 \times n - 24$$

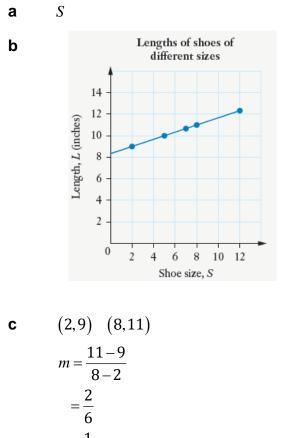
 $20 = 4n - 24$
 $44 = 4n$
 44


- e i Values of P will be 0 or less
 - ii After 18 years, children become adults and either receive no pocket money or an amount based on a different formula.

Test yourself 7

Question 1

b


Question 2

a
$$m = \frac{0-1}{2-1} = \frac{-1}{2} = -\frac{1}{2}$$

 $c = 1$
 $\therefore y = -\frac{1}{2}x + 1$

b $m = \frac{0-(-3)}{1-0} = \frac{3}{1} = 3$
 $\therefore y = 3x - 3$

Question 3

a $m = \frac{18-3}{10-4} = \frac{15}{6} = 2\frac{1}{2}$ **b** $m = \frac{17-5}{1-5} = \frac{12}{-4} = -3$

a
$$m = \frac{18 - 12}{12 - 0} = \frac{6}{12} = \frac{1}{2}$$
 b $m = \frac{6 - 42}{11 - 2} = \frac{-36}{9} = -4$

$$=\frac{1}{3}$$

The gradient represents the increase in length per shoe size, in inches/size.

d $8\frac{1}{3}$ inches, the vertical intercept

e
$$L = \frac{1}{3}S + 8\frac{1}{3}$$

f
$$L = \frac{1}{3} \times 7\frac{1}{2} + 8\frac{1}{3}$$

= $10\frac{5}{6}$

g
$$L = \frac{1}{3}S + 8\frac{1}{3}$$

 $13 = \frac{1}{3}S + 8\frac{1}{3}$
 $\frac{14}{3} = \frac{1}{3}S$
 $S = 14$

d = kr950 = k × 540 $k = \frac{950}{540}$ = 1.759... ∴ d = 1.759...×r = 1.759...×10000 = 17592.59... m = 17.592... km ≈ 18 km

Question 7

i	\$31	
ii	\$93	
i	1700 baht	
ii	2150 ba	aht
(0,0)		(2350,90)
$m = \frac{90 - 0}{2350 - 0}$ $= \frac{90}{2350}$ $= 0.038$ ≈ 0.04		
	ii ii (0,0) $m = \frac{1}{2}$ $= \frac{1}{2}$ = 0.	ii \$93 i 1700 b ii 2150 b (0,0) $m = \frac{90-0}{2350-0}$ $= \frac{90}{2350}$ = 0.038

This represents the number of A per baht, i.e., 1 baht = A \$0.04