NEW CENTURY MATHS 11 MATHEMATICS STANDARD (PATHWAY 2)

FULLY WORKED SOLUTIONS

Chapter 5

SkillCheck

Question 1

а	20.83×1000 = 20 830	d	$72.5 \div 100 = 0.725$
b	$970.2 \div 10 = 97.02$	е	$10.4 \div 1000 = 0.0104$
С	$6.59 \times 10000 = 65\ 900$	f	$0.0735 \times 10 = 0.735$

Question 2

а	$10^{7} = 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$ = 10 000 000	С	$10^{-2} = \frac{1}{10 \times 10}$
b	$10^4 = 10 \times 10 \times 10 \times 10$ = 10 000		$=\frac{1}{100}$ = 0.01

Question 3

а	$A = s^2$	C	$A = \pi \times r^2$
	$=4^{2}$		$=\pi \times 5^2$
	$=16 \text{ cm}^2$		=78.54 cm ²
b	$A = l \times w$	d	$A = \frac{1}{2}(a+b)h$
	$=15\times6$		$n = \frac{1}{2}(u + b)n$
	$=90 \text{ m}^2$		$=\frac{1}{2}\times(7+13)\times6$
			$= 60 \text{ cm}^2$

Question 4

a

$$A = \frac{1}{2}bh$$

 $= \frac{1}{2} \times 9 \times 40$
 $= 180 \text{ cm}^2$
b
 $a^2 + b^2 = c^2$
 $40^2 + 9^2 = c^2$
 $1681 = c^2$
 $\sqrt{1681} = c$
 $41 = c$
 $\therefore h = 41 \text{ cm}$

а	250 g = $\frac{1}{4}$ of a kilogram	b	Cost for 5 kg = 4.15
	$\frac{250 \text{ g}}{4}$ g = $\frac{-}{4}$ of a knogram		\therefore Cost per kilogram = \$4.15 ÷ 5
	\therefore \$5.10 ÷ 4		= \$0.83
	= \$1.28		\therefore Cost for three kilograms = \$0.83 × 3
			= \$2.49

Question 6

a 210 c	$m \div 100 = 2.1 m$
----------------	----------------------

b $210 \text{ cm} \times 10 = 2100 \text{ mm}$

c $210 \text{ cm} \div 100 = 2.1 \text{ m}$

 $2.1 \text{ m} \div 1000 = 0.0021 \text{ km}$

Question 7

a $8.1 \text{ L} \div 1000 = 0.0081 \text{ kL}$

b $8.1 \text{ L} \times 1000 = 8100 \text{ mL}$

а	$6.3 \text{ cm} \times 10 = 63 \text{ mm}$	h	$3400 \text{ kg} \div 1000 = 3.4 \text{ t}$
b	$4.36 \text{ m} \times 100 = 436 \text{ mm}$	i	$4720 \text{ L} \div 1000 = 4.72 \text{ kL}$
C	$7200 \text{ mm} \div 10 = 720 \text{ cm}$	j	$6000 \text{ mg} \div 1000 = 6 \text{ g}$
	$720 \text{ cm} \div 100 = 7.2 \text{ m}$		$6 \text{ g} \div 1000 = 0.006 \text{ kg}$
d	$285 \text{ g} \div 1000 = 0.285 \text{ kg}$	k	$7.5 \times 60 = 450 \text{ min}$
е	$6.9 \text{ mm} \times 1000 = 6900 \ \mu\text{m}$		$450 \min \times 60 = 27\ 000 \text{ s}$
f	$58\ 000\ \text{mL} \div\ 1000\ = 58\ \text{L}$	I.	$9.4 \times 1000 = 9400 \text{ m}$
g	$5.32 \text{ kg} \times 1000 = 5320 \text{ g}$		9400 m×100 = 940 000 cm

Question 2

 $100 \text{ kg} \times 1000 = 100 \ 000 \text{g}$

∴A

Question 3

a $169 \text{ cm} \times 10 = 1690 \text{ mm}$

Question 4

 $57.5 \text{ kg} \times 1000 = 57\ 500 \text{ g}$

Question 5

 $1500 \text{ m} \div 1000 = 1.5 \text{ km}$

Question 6

а	From 7.41 a.m. \rightarrow 8 a.m. = 19 minutes
	From 8.00 a.m. \rightarrow 9 a.m. = 60 minutes
	From 9.00 a.m. \rightarrow 9.18 a.m. = 18 minutes
	$\therefore 19 + 60 + 18 = 97$ minutes

- **b** 97 min \times 60 = 5820 seconds
- **c** 97 min \div 60 = 1.616 h

= 1h and (0.616×60) min = 1h and 37min

b $169 \text{ cm} \div 100 = 1.69 \text{ m}$

 $59 \text{ kL} \times 1000 = 59\ 000 \text{ L}$

Question 8

а	kg	f	mg
b	cm or m	g	cm or mm
C	m	h	kL
d	km	i	t
е	mL or L	j	mm or µm

Question 9

а	$102 \text{ g} \div 1000 = 0.102 \text{ kg}$	b	$5.2 \text{ cm} \div 100 = 0.052 \text{ m}$

Question 10

$2\ 000\ 000 \times 2.45t = 49\ 000\ 000\ t$			
49 000 000 t \div 1 000 000 = 4.9 megatonnes			

Question 11

а	5400 m = 5.4 km	b	$12 + 38 + 58 = 108 \min$
	$\therefore 5.4 + 3.8 + 9.5 = 18.7 \text{ km}$		= 1 h 48 min
	ation 12		

Question 12

 $8560 L \div 1000 = 8.56 kL$

Question 13

а	40 m or B.	d	1000 km or C.
b	30 000 L or D.	е	12 cm or A.
С	300 g or C.	f	380 mL or A.

2.5 km = 2500m = 250 000 cm No. steps for dad = 250 000 ÷ 80 = 3125 steps No. steps for Anna = 250 000 ÷ 55 = 4545.54 steps Difference ≈ 1420 ∴ Anna took approximately 1420 more steps

Question 15

24 h \times 60 \times 60 = 86 400 s

Exercise 5.02 Error in measurement

Question 1		
а	i	1 m.
	ii	4 m.
	iii	Absolute error: ± 0.5 m
	Limits	of accuracy: $4 \pm 0.5 = 3.5$ to 4.5 m.
b	i	1 mm or 0.1 cm.
	ii	18 mm or 1.8 cm.
	iii	Absolute error: $\pm 0.5 \text{ mm}$
	Limits	of accuracy: $18 \pm 0.5 = 17.5$ to 18.5 mm
С	i	5 km/hr.
	ii	50 km/hr.
	iii	Absolute error: ± 2.5 km/hr
	Limits	of accuracy: $50 \pm 2.5 = 47.5$ to 52.5 km/hr
d	i	0.5°C
	ii	38°C
	iii	Absolute error: $\pm 0.25^{\circ}C$
	Limits	s of accuracy: $38 \pm 0.25 = 37.75$ to 38.25° C
е	i	5 m/s.
	ii	45 m/s.
	iii	Absolute error: ± 2.5 m/s
	Limits	s of accuracy: $45 \pm 2.5 = 42.5$ to 47.5 m/s
f	i	500 rpm.
	ii	7000 rpm.
	iii	Absolute error: ± 250 rpm
	Limits	of accuracy: 7000 ± 250 rpm = 6750 to 7250 rpm

Question 2

When using a jug marked in millimetres, ± 0.5 mL is the absolute measurement, so C.

The lengths that could be measured using a measuring tape with a precision of 1 cm are 37 cm and 9 cm, so A and D.

Question 4

The angle sizes that are incorrectly recorded if using a protractor marked in degrees are 103.5°, $64\frac{1}{2}$ ° and

88.4°, so C, D and F.

Question 5

а	± 0.5 mL.
b	5560 mm is ± 0.5 mm.
С	± 0.05 g.
d	± 0.05 s.
е	500 grams (to the nearest gram) is ± 0.5 g.
f	± 0.5 m.
g	600 mL (to the nearest milliliter) is \pm 0.5 mL.
h	500 g (to the nearest 10 grams) is ± 5 g.
i	± 0.05 cm.

j 5000 g (to the nearest 100 grams) is \pm 50 g

Question 6

 $\frac{2964 + 3021 + 2938 + 2899}{4} = \frac{11\,822}{4}$ = 2955.5 $\approx 2956 \text{ mm}$

Question 7

- **a** ± 0.5 cm.
- **b** The true measurement lies between the values of 20.5 cm and 21.5 cm.

c Percentage error =
$$\frac{\text{absolute error}}{\text{measurement}} \times 100\%$$

= $\frac{0.5}{21} \times 100$
= 2.38%

© Cengage Learning Australia Pty Ltd 2017 MATHS11WS17605 www.nelsonnet.com.au

Percentage error =
$$\frac{\text{absolute error}}{\text{measurement}} \times 100\%$$

= $\frac{0.05}{2.3} \times 100\%$
= 2.17%

Question 9

Percentage error = $\frac{\text{absolute error}}{\text{measurement}} \times 100\%$ = $\frac{0.5}{12\ 683} \times 100\%$ = 0.0039%

Question 10

a Percentage error =
$$\frac{\text{absolute error}}{\text{measurement}} \times 100\%$$

= $\frac{0.05}{15.2} \times 100\%$
= 0.33%

b Percentage error =
$$\frac{\text{absolute error}}{\text{measurement}} \times 100\%$$

= $\frac{5}{800} \times 100\%$
= 0.625%
 $\approx 0.63\%$
c Percentage error = $\frac{\text{absolute error}}{\text{measurement}} \times 100\%$
= $\frac{0.005}{0.15} \times 100\%$

0.15 = 3.33%

 \therefore 15.2 mg is the most accurate as it has the smallest percentage error.

Question 11

We don't know the absolute error; the figure could be to the nearest whole number, ten or fifty.

Question 12

 $38 L \pm 0.5 L$ is correct to the nearest whole L. $38.0 L \pm 0.05 L$ is correct to the nearest 0.1 L. So 38.0 L is more accurate.

Question 13

Teacher to check.

© Cengage Learning Australia Pty Ltd 2017 MATHS11WS17605 www.nelsonnet.com.au

The first two numbers are significant. Need to round second number up as third number is ≥ 5 . Then use zero to maintain place. So, 310. \therefore B.

Question 2

- **a** The first two numbers are significant. Then use zero to maintain place. So, 3800.
- **b** The first two numbers are significant. Need to round second number up as third number is ≥ 5 . Then use zero to maintain place. So, 2100.
- **c** Go to first non-zero number. From there: The first two numbers are significant. Then use zero to maintain place. So, 0.0061.
- **d** The first two numbers are significant. Need to round second number up as third number is ≥ 5 . Then use zero to maintain place. So, 250 000.
- **e** The first two numbers are significant. Need to round second number up as third number is ≥ 5 . Then use zero to maintain place. So, 15 000 000.
- f Go to first non-zero number. From there: The first two numbers are significant. Need to round second number up as third number is ≥ 5 . Then use zero to maintain place. So, 0.000 47.

Question 3

- **a** The first three numbers are significant. Need to round third number up as fourth number is ≥ 5 . Then use zero to maintain place. So, 130.
- **b** The first three numbers are significant. Then use zero to maintain place. So, 4980.
- **c** Go to first non-zero number. From there: The first three numbers are significant. Then use zero to maintain place. So, 0.0106.
- **d** The first three numbers are significant. Need to round third number up as fourth number is ≥ 5 . Then use zero to maintain place. So, 1 360 000.
- **e** The first three numbers are significant. Then use zero to maintain place. So, 25 400 000.
- **f** Go to first non-zero number. From there: The first three numbers are significant. Then use zero to maintain place. So, 0.000 680.

- **a** The first number is significant. Need to round first number up as second number is ≥ 5 . Then use zero to maintain place. So, 3000.
- **b** The first number is significant. So, 3.
- **c** The first number is significant. Then use zero to maintain place. So, 10 000.
- **d** Go to first non-zero number. From there: The first number is significant. Then use zero to maintain place. So, 0.005.
- **e** The first number is significant. Then use zero to maintain place. So, 20.
- f Go to first non-zero number. From there: The first number is significant. Need to round first number up as second number is ≥ 5 . Then use zero to maintain place. So, 0.7.

Question 5

а	9 mm is 1 sig fig ∴ correct	d	6.5 mm is 2 sig fig \therefore incorrect
b	7.23 mm is 3 sig fig ∴ incorrect	е	31 mm is 2 sig fig ∴ correct
С	24 mm is 2 sig fig ∴ correct	f	10 mm could be 1 or 2 sig fig \therefore correct
Question 6			

Question 6

а	23 μ m is 2 sig fig \therefore correct	d	832 µm is 3 sig fig ∴ incorrect
b	104 µm is 3 sig fig ∴ incorrect	е	28.6 µm is 3 sig fig ∴ incorrect

19.6 µm is 3 sig fig ∴ incorrect

Question 7

С

- **a** $0.2 \div 0.3 = 0.666...$ ≈ 0.67
- **b** $11 \div 1990 = 0.005527...$ ≈ 0.0055
- **c** $16 \div 12 = 1.333... \approx 1.3$
- **d** $\sqrt{0.0075} = 0.0866...$ ≈ 0.087
- e 9 300 000 × 0.085 = 790 500 ≈ 790 000

- **f** $3 \mu m \text{ is } 1 \text{ sig fig } \therefore \text{ incorrect}$

f
$$2.7^2 = 7.29 \approx 7.3$$

g $\sqrt{560} = 23.66... \approx 24$
h $\sqrt{5.6} = 2.36... \approx 2.4$

i
$$3.4 \times 9.9 = 33.66$$

 ≈ 34

The first three numbers are significant. Need to round third number up as fourth number is ≥ 5 . Then use zero to maintain place. So, 7 620 000.

Question 9

a The first three numbers are significant. Need to round third number up as fourth number is ≥ 5 Then use zero to maintain place.

So, 352 000 kg.

- **b** The first three numbers are significant. Need to round third number up as fourth number is ≥ 5 . Then use zero to maintain place. So, 4190 m.
- **c** The first three numbers are significant. Then use zero to maintain place. So, 67.1 km/h.
- **d** The first three numbers are significant. Need to round third number up as fourth number is ≥ 5 . Then use zero to maintain place. So, 14.8 mL.
- The first three numbers are significant. Need to round third number up as fourth number is ≥ 5 . Then use zero to maintain place.

So, 150 000 000 km.

- **a** Place a decimal point at the end of the number and move it 7 places to the left. $\therefore 4.213 \times 10^7$
- **b** Move the decimal point 2 places to the right. $\therefore 1.81 \times 10^{-2}$
- **c** Place a decimal point at the end of the number and move it 3 places to the left. $\therefore 3.4 \times 10^3$
- **d** Place a decimal point at the end of the number and move it 4 places to the left. $\therefore 2.0 \times 10^4$
- Move the decimal point 3 places to the right. $\therefore 3.5 \times 10^{-3}$
- **f** Move the decimal point 4 places to the right. $\therefore 2.0 \times 10^{-4}$
- **g** Move the decimal point 1 place to the right. $\therefore 3.3 \times 10^{-1}$
- **h** Move the decimal point 3 places to the right. $\therefore 4.0 \times 10^{-3}$
- i Place a decimal point at the end of the number and move it 2 places to the left. $\therefore 2.3 \times 10^2$
- **j** Move the decimal point 5 places to the right. $\therefore 7.23 \times 10^{-5}$
- **k** Place a decimal point at the end of the number and move it 8 places to the left. $\therefore 6.1 \times 10^8$
- Move the decimal point 8 places to the right. $\therefore 8.0 \times 10^{-8}$

- **a** Round to two significant figures = 53 000 000 Place a decimal point at the end of the number and move it 7 places to the left. $\therefore 5.3 \times 10^7$
- **b** Round to two significant figures = $150\ 000$ Place a decimal point at the end of the number and move it 5 places to the left. $\therefore 1.5 \times 10^5$
- **c** Round to two significant figures = 2500Place a decimal point at the end of the number and move it 3 places to the left. $\therefore 2.5 \times 10^3$
- **d** Round to two significant figures = 0.00046Move the decimal point 4 places to the right. $\therefore 4.6 \times 10^{-4}$
- Round to two significant figures = 0.0027Move the decimal point 3 places to the right. $\therefore 2.7 \times 10^{-3}$
- f Round to two significant figures = 0.10 Move the decimal point 1 place to the right. $\therefore 1.0 \times 10^{-1}$
- **g** Round to two significant figures = $0.000\ 033$ Move the decimal point 5 places to the right. $\therefore 3.3 \times 10^{-5}$
- **h** Round to two significant figures = 0.44Move the decimal point 1 place to the right. $\therefore 4.4 \times 10^{-1}$
- i Round to two significant figures = 6.5Move the decimal point 0 places to the right. $\therefore 6.5 \times 10^{0}$

Question 3

Round to three significant figures = 357 000 000 Place a decimal point at the end of the number and move it 8 places to the left. $\therefore 3.57 \times 10^{8}$ $\therefore B$

- a Move the decimal point 5 places to the right and complete using place holding zeros. ∴ 740 000
- **b** Move the decimal point 5 places to the left. $\therefore 0.312$
- C Move the decimal point 3 places to the right and complete using place holding zeros. ∴ 1850
- **d** Move the decimal point 4 places to the left and complete using place holding zeros. ∴ 0.000 66
- e Move the decimal point 3 places to the left and complete using place holding zeros.
 ∴ 0.002 54
- **f** Move the decimal point 8 places to the right and complete using place holding zeros. \therefore 475 100 000
- **g** Move the decimal point 2 places to the left and complete using place holding zeros. ∴ 0.098
- h Place a decimal point at the end of the number and move it 2 places to the right, complete using place holding zeros.
 ∴ 300
- i Move the decimal point 2 places to the left and complete using place holding zeros. ∴ 0.054 97
- j Move the decimal point 8 places to the right and complete using place holding zeros. ∴ 12 160
- **k** Move the decimal point 1 place to the left. $\therefore 0.802$
- Move the decimal point 3 places to the right. ∴ 6309

Question 5

a Place a decimal point at the end of the number and move it 10 places to the right. $\therefore 1.37 \times 10^{10}$

b
$$\frac{1}{1\ 000\ 000} = \frac{1}{1.0 \times 10^6}$$

= 1.0×10⁻⁶

- a Place a decimal point at the end of the number.
 Move the decimal point 8 places to the left and complete using place holding zeros.
 ∴ 0.000 000 03
- **b** Move the decimal point 9 places to the right and complete using place holding zeros. \therefore 9 461 000 000
- C Move the decimal point 6 places to the left and complete using place holding zeros. ∴ 0.000 002
- **d** Move the decimal point 8 places to the right and complete using place holding zeros. ∴ 152 600 000

Question 7

Round to three sig fig = 7 460 000 000 Place a decimal point at the end of the number and move it 6 places to the left. $\therefore 7.46 \times 10^9$

Question 8

By calculator as per example.

а	2.144×10^7	е	5.314 41×10 ⁻¹⁰
b	3.2×10^{5}	f	3.76×10 ¹
с	3.5×10^4	g	1.26×10^{4}
d	2.304×10^{-5}	h	2.3×10 ⁵

Question 9

By calculator as per example.

а	3.0×10^4	е	5.9×10 ⁴
b	-3.6×10^{-3}	f	3.4×10 ⁻²
С	4.1×10^{12}	g	9.2×10^2
d	3.3×10^{-8}	h	1.2×10^{-4}

By calculator as per example.

а	0.0048	е	13 640 000
b	43 680 000 000	f	19 063 000
С	0.0094	g	0.000 052
d	187 690 000	h	350 000

Question 11

Answers will vary. Teacher to check.

Exercise 5.05 Perimeters of circular and composite shapes

Question 1		
а	Perimeter = $8 + 2 + 10 + 5 + 2 + 3$ = 30 m	
b	Perimeter = $(15 \times 3) + 3 + 4 + 9 + 4 + 3$ = 68 cm	
С	Perimeter = $(15 \times 3) + 12 + 5 + 4$ = 66 cm	
d	Perimeter = $12 + 12 + 10 + 10 + 10$ = 54 cm	
e	Perimeter = $(100 \times 4) + (300 \times 2) + (80 \times 4) + (200 \times 2)$ = 400 + 600 + 320 + 400 = 1720 cm	
f	Find the third side using Pythagoras.	
	$x^2 = 7^2 + 36^2$	
	$x^2 = 1345$	
	$x = \sqrt{1345}$	
	$x \approx 36.67 \text{ m}$	
	:. Perimeter = $36.67 + 7 + 36$ = 79.67 m	
g	Find the unknown side using Pythagoras.	
	$x^2 = 7^2 + 5^2$	
	$x^2 = 74$	
	$x = \sqrt{74}$	
	$x \approx 8.6 \text{ m}$	
	:. Perimeter = $5 + 5 + 12 + 8.6$ = 30.6 cm	
h	Perimeter = $(8 \times 6) + (13 \times 4) + (36 \times 2)$ = $48 + 52 + 72$ = 172 mm	
i	Perimeter = $30 + 30 + 20 + 20$ = 100 cm	

j Find the unknown side using Pythagoras.

$$x^{2} = 75^{2} - 60^{2}$$

$$x^{2} = 2025$$

$$x = \sqrt{2025}$$

$$x = 45 \text{ mm}$$

$$\therefore \text{ Perimeter} = 75 + 85 + 45 + 25$$

$$= 230 \text{ mm}$$

$$\textbf{k} \qquad \text{Perimeter} = 10 \times 4$$

$$= 40 \text{ cm}$$

$$\textbf{I} \qquad \text{Perimeter} = 7 + 3 + 7 + 13 + 13 + 15$$

$$= 58 \text{ cm}$$

Question 2

a Circumference =
$$2\pi r$$

= $2 \times \pi \times 8.5$
= $53.407...$
 ≈ 53.4 m

b	Perimeter = $\frac{2\pi r}{2} + 4$ OR	Perimeter = $\frac{\pi d}{2} + 4$
	$=rac{2 imes \pi imes 2}{2}+4$	$=\frac{\pi \times 4}{2}+4$
	≈ 10.3 m	≈ 10.3 m
С	Perimeter = $\frac{2\pi r}{4} + 6 + 6$	
	$=\frac{2\times\pi\times6}{4}+12$	
	≈ 21.4 cm	
d	Perimeter = $\frac{2\pi r}{2} + 6 + 4 + 6$	
	$=\frac{2\times\pi\times2}{2}+6+4+6$	
	≈ 22.3 cm	
е	Perimeter = $\frac{3}{4} \times (2\pi \times 15) + 15 + 15$	
	≈ 100.7 mm	

© Cengage Learning Australia Pty Ltd 2017 MATHS11WS17605 www.nelsonnet.com.au

f To find unknown straight side use Pythagoras. Sides are the hypotenuse, 15-9=6 cm and 8 cm.

 $x^2 = 6^2 + 8^2$ $x^2 = 100$ $x = \sqrt{100}$ x = 10 cmCircumference of the curve = $\frac{2\pi r}{2}$ $=\frac{2 \times \pi \times 4}{2}$ ≈ 12.6 cm \therefore Perimeter = 10 + 15 + 12.6 + 9 = 46.6 cmPerimeter = $\frac{2\pi r}{2}$ + 10 + 10 $=\frac{2\times\pi\times10}{2}+20$ ≈ 51.4 cm Two semi-circles make a whole circle. \therefore Perimeter = $2\pi r + 26 + 26$ $= 2 \times \pi \times 11 + 52$ ≈ 121.1 mm Perimeter = $\frac{2\pi r}{2} + \frac{2\pi r}{2} + 6$ $=\frac{2\times\pi\times6}{2}+\frac{2\times\pi\times3}{2}+6$ ≈ 34.3 m Perimeter = $\left[\frac{3}{4} \times (2\pi r)\right] \times 4$ $= \left[\frac{3}{4} \times (2 \times \pi \times 5)\right] \times 4$ ≈ 94.2 cm Perimeter = $\left[\frac{40}{360} \times (2\pi r)\right] + 16 + 16$

g

h

i

j

k

$$= \left[\frac{40}{360} \times (2 \times \pi \times 16)\right] + 32$$

$$\approx 43.2 \text{ m}$$

Perimeter =
$$\frac{2\pi r}{2} + \frac{2\pi r}{2} + 5 + 5$$

= $\frac{2 \times \pi \times 10}{2} + \frac{2 \times \pi \times 5}{2} + 10$
 $\approx 57.1 \text{ cm}$

© Cengage Learning Australia Pty Ltd 2017

a i
$$l = \frac{\theta}{360} \times 2\pi r$$

 $= \frac{80}{360} \times 2 \times \pi \times 12$
 $\approx 16.8 \text{ m}$
ii \therefore Perimeter $= r + r + \frac{\theta}{360} \times 2\pi r$
 $= 12 + 12 + 16.8$
 $\approx 40.8 \text{ m}$
b i $l = \frac{\theta}{360} \times 2\pi r$
 $= \frac{90}{360} \times 2 \times \pi \times 9.6$
 $\approx 15.1 \text{ m}$

$$= \frac{1}{360} \times 2 \times \pi \times 9.0$$

$$\approx 15.1 \text{ m}$$
ii \therefore Perimeter = $r + r + \frac{\theta}{360} \times 2\pi r$
 $= 9.6 + 9.6 + 15.1$
 $\approx 34.3 \text{ m}$

i
$$l = \frac{\theta}{360} \times 2\pi r$$
$$= \frac{135}{360} \times 2 \times \pi \times 86$$
$$\approx 202.6 \text{ mm}$$

С

ii
$$\therefore$$
 Perimeter = $r + r + \frac{\theta}{360} \times 2\pi r$
= $86 + 86 + 202.6$
 $\approx 374.6 \text{ mm}$

Question 4

Two semi-circles make a whole circle.

Ali: Large circle \rightarrow radius of $\frac{20+4+4}{2} = 14 \text{ m.}$ \therefore distance $= 2\pi r + 30 + 30$ $= 2 \times \pi \times 14 + 60$ $\approx 247.96 \text{ m}$ Billy: Smaller one \rightarrow radius of $\frac{20}{2} = 10 \text{ m.}$ \therefore distance $= 2\pi r + 80 + 80$ $= 2 \times \pi \times 10 + 160$ $\approx 222.83 \text{ m}$

- $\therefore \text{ difference} = 247.96 \text{ m} 222.83 \text{ m}$ = 25.13 m difference
- : Ali ran a distance of 25.1 m more than Billy, correct to the nearest 0.1 m.

a
$$\theta = 360^\circ \div 8$$

= 45°

b radius
$$=\frac{30}{2}=15$$
 cm

$$\therefore \text{Perimeter} = r + r + \frac{\theta}{360} \times 2\pi r$$
$$= 15 + 15 + \frac{45}{360} \times 2 \times \pi \times 5$$
$$= 30 + 11.78...$$
$$= 41.78...$$
$$\approx 41.8 \text{ cm}$$

© Cengage Learning Australia Pty Ltd 2017 MATHS11WS17605 www.nelsonnet.com.au

 $300 \text{ m}^2 \times 100 \times 100 = 3\ 000\ 000\ \text{cm}^2$ $\therefore\ \text{C}$

Question 2

 $5 \text{ km}^2 = 5\ 000\ 000\ \text{m}^2$

 $\frac{5\ 000\ 000}{10\ 000} = 500\ ha$: A

Question 3

- **b** $2500 \text{ cm}^2 \div 10 \div 10 = 25 \text{ mm}^2$
- **c** 72 000 $m^2 \div 10\ 000 = 7.2$ ha
- **d** $6800 \text{ cm}^2 \div 100 \div 100 = 0.68 \text{ m}^2$
- **e** $3.09 \text{ km}^2 \times 1000 \times 1000 = 3\ 090\ 000 \text{ m}^2$
- f $3.6 \text{ km}^2 \times 1000 \times 1000 = 3\ 600\ 000\ \text{m}^2$ $3\ 600\ 000\ \text{m}^2 \div 10\ 000 = 360\ \text{ha}$
- $\textbf{g} \qquad 4.73 \text{ m}^2 \times 100 \times 100 \times 10 \ \times 10 = 4\ 730\ 000\ \text{mm}^2$
- h 540 ha \times 10 000 = 5 400 000 m² 5 400 000 m² \div 1000 \div 1000 = 5.4 km²

Question 4

 $801\ 600\ \text{km}^2 \times 1000 \times 1000 = 801\ 600\ 000\ 000\ \text{m}^2$

801 600 000 000 m² \div 10 000 = 8.016 × 10⁷ ha

Question 5

- a $2300 \times 1880 = 4\ 209\ 000\ \text{mm}^2$ Convert to m². $4\ 209\ 000 \div 10 \div 100 \div 100 = 4.209\ \text{m}^2$
- **b** 2300 mm × 1830 mm = 2.3 m × 1.83 m = 4.209 m²

The answers are the same.

© Cengage Learning Australia Pty Ltd 2017 MATHS11WS17605 www.nelsonnet.com.au

Area = area of rectangle + area of triangle

$$= 45 \times 58 + \frac{1}{2} \times 45 \times 23$$
$$= 3127.5 \text{ m}^2$$
$$\therefore \text{ A}$$

Question 7

$$A = \frac{\theta}{360} \times \pi r^{2}$$
$$= \frac{70}{360} \times \pi \times 8^{2}$$
$$\approx 39.1 \text{ cm}^{2}$$
$$\therefore \text{ C.}$$

Question 8

a Area =
$$s^2$$

= 8^2
= 64 m²

b Area =
$$\frac{1}{2}(a+b)h$$

= $\frac{1}{2} \times (43+90) \times 65$
= 4322.5 m^2
c Area = $\frac{1}{2}bh$
= $\frac{1}{2} \times 6 \times 8$
= 24 m^2
d Area = $\frac{1}{2}xy$
= $\frac{1}{2} \times 10 \times 8$
= 40 m^2
e Area = $b \times h$
= 15×25
= 375 m^2
i Area = $\frac{\pi r^2}{2}$
= $\frac{\pi \times 7.5^2}{2}$

f Area =
$$\pi r^2$$

= $\pi \times 1200^2$
= 4 523 893.42...
 ≈ 4 523 893.4 cm²

g Area =
$$\frac{1}{2}(a+b)h$$

= $\frac{1}{2} \times (18+32) \times 12$
= 300 m²

h To find unknown straight side use Pythagoras. Sides are the hypotenuse 5 m and side 3 m. $5^2 = x^2 + 3^2$ $x^2 = 5^2 - 3^2$ $x^2 = 16$ $x = \sqrt{16}$ x = 4 m Area $= \frac{1}{2}bh$ $= \frac{1}{2} \times 3 \times 4$ = 6 m² = 88.35... ≈ 88.4 m²

© Cengage Learning Australia Pty Ltd 2017

Area =
$$\pi r^2 - \pi r^2$$

= $\pi \times 12^2 - \pi \times 9^2$
= 197.92...
 $\approx 197.9 \text{ cm}^2$

j

Area
$$1 = \frac{1}{2}bh$$
$$= \frac{1}{2} \times 8 \times 12$$
$$= 48 \text{ m}^2$$
Area
$$2 = \frac{1}{2}bh$$
$$= \frac{1}{2} \times 12 \times 10$$
$$= 60 \text{ m}^2$$
Area
$$3 = \frac{1}{2}bh$$
$$= \frac{1}{2} \times 18 \times 9$$
$$= 81 \text{ m}^2$$

k

Total area =
$$48 + 60 + 81$$

= 189 m^2

Question 9

a
$$A_{shaded} = A_{outer rectangle} - A_{inner rectangle}$$

= $6 \times 20 - 9 \times 3$
= 93 m^2

b Area =
$$bh$$

= 4 × 9
= 36 cm²

c
$$A_{\text{shaded}} = A_{\text{square}} - A_{\text{circle}}$$

= 190 × 190 - π × 95²
= 7747.1263...
≈ 7747 mm²

d Area =
$$A_{rectangle} + A_{rectangle} + A_{rectangle}$$

Area = $2 \times 5 + 5 \times 15 + 7 \times 6$
= 127 m^2

$$e \qquad A_{\text{shaded}} = A_{\text{rectangle}} - A_{\text{trapezium}}$$
$$= 10 \times 6 - \frac{1}{2} (2.5 + 6) \times 7$$
$$= 30.25$$
$$\approx 30 \text{ m}^2$$
$$f \qquad A_{\text{shaded}} = A_{\text{outer rectangle}} + A_{\text{outer circle}} - A_{\text{int}}$$

$$= 7.8 \times 10.2 + \pi \times \left(\frac{7.8}{2}\right)^2 - \pi \times 3.5^2$$
$$= 88.85911...$$
$$\approx 89 \text{ m}^2$$

a
$$A = \frac{\theta}{360} \times \pi r^{2}$$
$$= \frac{30}{360} \times \pi \times 5^{2}$$
$$= 6.544...$$
$$\approx 7 \text{ m}^{2}$$
b
$$A = \frac{\theta}{360} \times \pi r^{2}$$
$$= \frac{120}{360} \times \pi \times 90^{2}$$
$$= 8482.30...$$
$$\approx 8482 \text{ cm}^{2}$$

Question 11

a
Area =
$$A_{outer rectangle} - A_{rectangle} - A_{rectangle}$$

= $10 \times 7 - 3 \times 2 - 3 \times 4$
= 52 m^2

b Area =
$$A_{square} + 4 \times A_{semi-circle}$$

= $8 \times 8 + 4 \times \frac{1}{2} \times \pi \times 4^2$
= 164.530 96...
 $\approx 165 \text{ m}^2$

c Using Pythagoras with hypotenuse of 10 cm and side of 6 cm:

Height of triangle = $\sqrt{10^2 - 6^2}$ = 8

Area =
$$A_{triangle} + A_{semi-circle}$$

= $\frac{1}{2} \times 8 \times 12 + \frac{1}{2} \times \pi \times 6^2$
= 104.548 66...
 $\approx 105 \text{ m}^2$

$$A = \frac{\theta}{360} \times \pi r^2$$
$$= \frac{75}{360} \times \pi \times 480^2$$
$$= 150 \ 796.44...$$
$$\approx 150 \ 796 \ m^2$$

С

d

f

Area =
$$A_{\text{rectangle}}A_{\text{triangle}}$$

= 9.6 × 2.8 + $\frac{1}{2}$ × 9.6 × 1.3
= 33.12
≈ 33 m²

e
$$A_{\text{shaded}} = A_{\text{rectangle}} + A_{\text{trapezium}}$$

= $12 \times 8 + \frac{1}{2} \times (12 + 6) \times 8$
= 168 m^2

Area = A_{trapezium} + A_{trapezium}
=
$$\frac{1}{2}(6+11) \times 4 + \frac{1}{2}(5+11) \times 4$$

= 66 m²

Area
$$1 = \frac{\pi r^2}{2}$$
$$= \frac{\pi \times 2^2}{2}$$
$$\approx 6.3 \text{ m}^2$$
Area
$$2 = l \times w$$
$$= 4 \times 9$$
$$= 36 \text{ m}^2$$
$$\therefore \text{ Total area} = 6.3 \text{ H}$$

$$a = 6.3 + 36$$

= 42.3 m²

Question 13

a Area
$$1 = l \times w$$

 $= 200 \times 60$
 $= 12\ 000\ m^2$
Area $2 = \pi r^2$
 $= \pi \times 30^2$
 $= 2827.433...\ m^2$
Total area $= 12\ 000 + 2827.433...$
 $= 14\ 827.433...\ m^2$
 $\approx 15\ 000\ m^2\ correct\ to\ 2\ sig\ figs$
b Radius $= \frac{60}{2} = 30\ m$
 \therefore Perimeter $= 200 + 200 + 2 \times (\frac{1}{2} \times 2\pi r)$
 $= 400 + 2 \times (\frac{1}{2} \times 2 \times \pi \times 30)$
 $= 400 + 188.495...$
 $= 588.495...$
 $\approx 588.5\ m$

С

a Area of frame = Area 1 - area 2 Area 1 = $l \times w$ = 90×70 = 6300 cm² For Area 2: l = 90-16-16 b = 70-16-16= 58 = 38 Area 2 = $l \times w$ = 58×38 = 2204 cm² \therefore Area = 6300 cm² - 2204 cm² = 4096 cm² Convert to m²: \div 100 \div 100 = 0.4096 m²

b 0.4096 m² at a cost of \$135 per metre. 0.4096 \times 135 = \$55.30

Question 15

a i Radius
$$=\frac{5}{2} = 2.5 \text{ cm}$$

 $A_{\text{shaded}} = A_{\text{square}} - 4 \times A_{\text{semi-circle}}$
 $= 10 \times 10 - 4 \times \frac{1}{2} \times \pi \times 2.5^2$
 $= 60.730 \text{ 09...}$
 $\approx 60.7 \text{ cm}^2$
ii Radius $=\frac{8}{2} = 4 \text{ cm}$
 $A_{\text{shaded}} = A_{\text{square}} - 4 \times A_{\text{semi-circle}} + 4 \times A_{\text{semi-circle}}$
 $= 16 \times 16 - 4 \times \frac{1}{2} \times \pi \times 4^2 + 4 \times \frac{1}{2} \times \pi \times 4^2$

$$= 256 \text{ cm}^2$$

b The semicircles that lie outside of the square in part **ii** fit exactly into the semicircular cut-outs from within the square. So the area required is just the area of the square.

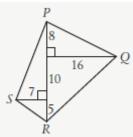
a Area 1 =
$$\frac{1}{2} \times 20 \times 15 = 150$$

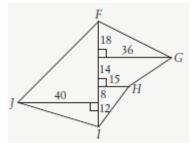
Area 2 = $\frac{1}{2} \times (15+11) \times 18 = 234$
Area 3 = $\frac{1}{2} \times 11 \times 8 = 44$
∴ Total area = 150 + 234 + 44
= 428 m²
≈ 430 m² correct to 2 sig fig
b Area 1 = $\frac{1}{2} \times 12 \times 14 = 84$
Area 2 = $\frac{1}{2} \times (12+5) \times (10+16+8) = 289$
Area 3 = $\frac{1}{2} \times 5 \times 10 = 25$
Area 4 = $\frac{1}{2} \times 24 \times 18 = 216$
Area 5 = $\frac{1}{2} \times (18+12) \times 16 = 240$
Area 6 = $\frac{1}{2} \times 12 \times 18 = 108$
∴ Total area = 184 + 289 + 25 + 216 + 240 + 108
= 962 m²
≈ 960 m² correct to 2 sig fig
c Area 1 = $\frac{1}{2} \times 60 \times 105 = 3150$
Area 3 = $\frac{1}{2} \times 60 \times 58 = 1740$
∴ Total area = 3150 + 1305 + 1740
= 6195 m²
≈ 6200 m² correct to 2 sig fig

Area
$$1 = \frac{1}{2} \times 20 \times 20 = 200$$

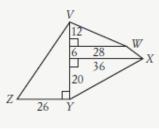
Area $2 = \frac{1}{2} \times 20 \times 30 = 300$
Area $3 = \frac{1}{2} \times (30 + 40) \times 46 = 1610$
Area $4 = \frac{1}{2} \times (20 + 25) \times 42 = 945$
Area $5 = \frac{1}{2} \times 40 \times 20 = 400$
Area $6 = \frac{1}{2} \times 25 \times 24 = 300$
 \therefore Total area $= 200 + 300 + 1610 + 945 + 400 + 300$
 $= 3755 \text{ m}^2$
 $\approx 3800 \text{ m}^2$ correct to 2 sig fig
Area $1 = \frac{1}{2} \times 35 \times 14 = 245$

е


d


Area
$$2 = \frac{1}{2} \times 32 \times 30 = 480$$

Area $3 = \frac{1}{2} \times (35+14) \times 30 = 735$
Area $4 = \frac{1}{2} \times 30 \times 37 = 555$
Area $5 = \frac{1}{2} \times (14+18) \times 16 = 256$
Area $6 = \frac{1}{2} \times 9 \times 18 = 81$
 \therefore Total area = 245 + 480 + 735 + 555 + 256 + 81
= 2352 m²
 $\approx 2400 \text{ m}^2 \text{ correct to } 2 \text{ sig fig}$


© Cengage Learning Australia Pty Ltd 2017 MATHS11WS17605 www.nelsonnet.com.au

a Area
$$1 = \frac{1}{2} \times 8 \times 16 = 64$$

Area $2 = \frac{1}{2} \times 16 \times 15 = 120$
Area $3 = \frac{1}{2} \times 7 \times 18 = 63$
Area $4 = \frac{1}{2} \times 7 \times 5 = 17.5$
 \therefore Total area $= 64 + 120 + 63 + 17.5$
 $= 264.5 \text{ m}^2$
 $\approx 265 \text{ m}^2$
b Area $1 = \frac{1}{2} \times 18 \times 36 = 324$
Area $2 = \frac{1}{2} \times (36 + 15) \times 14 = 357$
Area $3 = \frac{1}{2} \times 15 \times 20 = 150$
Area $4 = \frac{1}{2} \times 40 \times 12 = 240$
Area $5 = \frac{1}{2} \times 40 \times 40 = 800$
 \therefore Total area $= 324 + 357 + 150 + 240 + 800$
 $= 1871 \text{ m}^2$
c Area $1 = \frac{1}{2} \times 12 \times 28 = 168$
Area $2 = \frac{1}{2} \times (28 + 36) \times 6 = 192$
Area $3 = \frac{1}{2} \times 36 \times 20 = 360$
Area $4 = \frac{1}{2} \times 38 \times 26 = 494$

:. Total area = 168 + 192 + 360 + 494= 1214 m^2

a Find the length of AM using Pythagoras.

To find unknown straight side use the hypotenuse 58 m and side 32 m.

$$58^{2} = x^{2} + 32^{2}$$

$$x^{2} = 58^{2} - 32^{2}$$

$$x^{2} = 2340$$

$$x = \sqrt{2340}$$

$$x = 48.37... m$$
∴ Area $1 = \frac{1}{2} \times 32 \times 48.37... = 773.9...$
Area $2 = \frac{1}{2} \times 16 \times 48.37... = 386.9...$
∴ Total area = 773.9...+386.9...
= 1160.8
≈ 1161 m^{2}
Using half of triangle AMR, use Pythagoras

b Using half of triangle *AMR*, use Pythagoras to find the hypotenuse *AR*. The sides are 16 m and $\frac{\sqrt{2340}}{2} \approx 24.186...$ m.

$$x^{2} = 16^{2} + (24.186...)^{2}$$

 $x^{2} = 841$
 $x = \sqrt{841}$
 $x = 29 \text{ m}$
∴ Perimeter = $58 + 32 + 2 \times 29$

 $=148 \text{ m}^2$

Question 4

 $A = \frac{h}{2}(d_f + d_l)$ Area = $\frac{3}{2}(5+6)$ = 16.5 $\approx 17 \text{ m}^2$

∴ B

a
$$A = \frac{h}{2}(d_f + d_l)$$

Area $= \frac{18}{2}(21+12)$
 $= 297 \text{ m}^2$
b $A = \frac{h}{2}(d_f + d_l)$
Area $= \frac{30}{2}(16+28)$
 $= 660 \text{ m}^2$

Question 6

a $A = \frac{h}{2}(d_f + d_l)$ Area $1 = \frac{5}{2}(8+6) = 35$ Area $2 = \frac{5}{2}(6+4.5) = 26.25$ \therefore Area = 35 + 26.25 $= 61.25 \text{ m}^2$ $\approx 61 \text{ m}^2$ **b** $61.25 \div 12 = 5.01...$

∴ Need 6L of paint

$$\therefore \text{ Cost} = 6 \times \$45$$
$$= \$270$$

Question 7

$$A = \frac{h}{2}(d_f + d_l)$$

Area 1 = $\frac{4}{2}(0+7) = 14$

Area 2 = $\frac{4}{2}(7+8) = 30$

Area 3 = $\frac{4}{2}(8+12) = 40$

Area 4 = $\frac{4}{2}(12+10) = 44$

:. Area = 14 + 30 + 40 + 44= 128 m^2

$$A = \frac{h}{2}(d_f + d_i)$$

Area 1 = $\frac{6}{2}(2.5 + 4) = 19.5$
Area 2 = $\frac{6}{2}(4 + 1.8) = 17.4$
Area 3 = $\frac{6}{2}(1.8 + 7.2) = 27$
Area 4 = $\frac{6}{2}(7.2 + 7) = 42.6$
 \therefore Area = 19.5 + 17.4 + 27 + 42.6
= 106.5 m²

- **a** $7 \times 100^3 = 7\ 000\ 000\ \mathrm{cm}^2$
- **b** $50 \times 10^3 = 50\ 000\ \mathrm{mm}^2$
- **c** 89 000 ÷ 100³ = 0.089 m²
- **d** $0.468 \times 100^3 = 468\ 000\ \mathrm{cm}^2$
- **e** $2400 \div 10^3 = 2.4 \text{ cm}^2$
- **f** 5 600 000 \div 100³ = 5.6 m²
- **g** 9 100 000 \div 10³ = 9100 cm²
- **h** $12 \times 100^3 = 12\ 000\ 000\ \mathrm{cm}^2$

Question 2

 $1000 \text{ cm}^3 = 1000 \text{ mL} = 1\text{L}$ $1 \text{ cm}^3 = 1 \text{ mL}$ $1 \text{ m}^3 = 1 \text{ kL} = 1000 \text{ L}$ 1 ML = 1 million litres $680 \text{ cm}^3 = 680 \text{ mL}$ а $8500 \text{ cm}^3 = 8500 \text{ mL}$ b $= 8500 \div 1000 \text{ L}$ = 8.5 L $22 \text{ m}^3 = 22 \times 1000 \text{ L}$ С $= 22\ 000\ L$ d $8000 L = 8000 \div 1000 kL$ =8 kL $= 8 \text{ m}^{3}$ $3.5 \text{ m}^3 = 3.5 \times 1000 \text{L}$ е = 3500 L $=3500 \times 1000 \text{ mL}$ = 3500000 mL $= 3.5 \times 10^{6} \text{ mL}$ $690 \text{ L} = 690 \times 1000 \text{ mL}$ f $= 690 \ 000 \ \text{mL}$ $= 690 \ 000 \ \mathrm{cm}^3$

g	$55 m^3 = 55 \times 1000 L$ = 55 000 L
h	$4300 \text{ m}^3 = 4300 \text{ kL}$
i	$9500 L = 9500 \div 1000 m^3$ = 9.5 m ³
j	$8.5 \times 10^4 \text{ cm}^3 = 8.5 \times 10^4 \text{ mL}$ = $8.5 \times 10^4 \div 1000 \text{ L}$ = 85 L
k	$4.3 \times 10^{-3} \text{ kL} = 4.3 \times 10^{-3} \times 1000 \text{ L}$ = 4.3 L
	= $4.3 \times 1000 \text{ mL}$ = 4300 mL = 4300 cm^3
I	$10^6 \text{ m}^3 = 10^6 \text{ kL}$ = $10^6 \div 1000 \text{ ML}$
	$= 10^{3} \text{ ML}$ = 1000 ML

V = Ah= (1×0.6)×2 = 1.2 m³

:. A

Question 4

a Change all measurements to m.

 $80\ cm=0.8\ m$ and $90\ cm=0.9\ m$

:.
$$V = Ah$$

= (1.2×0.8)×0.9
= 0.864 m³

b 0.864 $m^3 = 0.864 \times 1000 L$ = 864 L

Question 5

V = Ah= (2.5×2.5)×2.5 = 15.625 m³

∴ B

Question 6

a
$$V = (5 \times 5) \times 10$$

= 250 cm³
b $V = (\frac{1}{2} \times 0.9 \times 1.8) \times 2.1$
= 1.701 m³
c $V = (\frac{1}{2} \times (15 + 18) \times 8) \times 2.3$
= 3036 cm³
d $V = (0.8 \times 6) \times 4.2$
= 20.16 m³

Question 7

V = (57 × 81) × 54= 249 318 cm³ = 249.318 L ≈ 249 L

: Capacity is 249 L.

a
$$V = 11.5 \times 1.4$$

= 16.1 m³

b $16.1 \text{ m}^3 = 16.1 \times 1000 \text{ L}$ = 16 100 L

Question 9

a
$$V = \left[\frac{1}{2} \times (1.4 + 1.8) \times 1\right] \times 2.5$$
$$= 4 \text{ m}^3$$

b For 1 skip = $$16.50 \times 4$ = \$66

For 4 skips =
$$66 \times 4$$

= 264

Question 10

a 2.031×10^{6} ML = $2.031 \times 10^{6} \times 1\ 000\ 000$ L = 2.031×10^{12} L

b
$$2.031 \times 10^{12} \text{ L} = 2.031 \times 10^{12} \div 1000 \text{ m}^3$$

= $2.031 \times 10^9 \text{ m}^3$

Question 11

SA = 1 × 2 + 2 × (1 × 0.6) + 2 × (2 × 0.6) = 5.6 m²

 $\therefore C$

a
$$SA = 2 \times (8 \times 6) + 2 \times (6 \times 5) + 2 \times (8 \times 5)$$

= 236 m²
b $SA = 6 \times (7.6^2)$
= 346.56
 $\approx 347 \text{ m}^2$
c $SA = 2 \times (5.4^2) + 4 \times (6.8 \times 5.4)$
= 205.2
 $\approx 205 \text{ m}^2$

Use Pythagoras to find the hypotenuse of the triangle. It has sides of 3 m and 8 m. d

 $x^2 = 3^2 + 8^2$ $x^2 = 73$ $x = \sqrt{73}$ *x* = 8.54... $SA = 8.54... \times 15 + 3 \times 15 + 8 \times 15 + 2 \times \left(\frac{1}{2} \times 3 \times 8\right)$ = 317.1... $\approx 317 \text{ m}^2$

е

Use Pythagoras to find the height of the triangle. It has a hypotenuse of 10 m and a side of $\frac{12}{2} = 6$ m.

$$10^{2} = x^{2} + 6^{2}$$

$$x^{2} = 10^{2} - 6^{2}$$

$$x^{2} = 64$$

$$x = \sqrt{64}$$

$$x = 8 \text{ m}$$

$$SA = 2 \times (10 \times 20) + 12 \times 20 + 2 \times (\frac{1}{2} \times 12 \times 8)$$

$$= 736 \text{ m}^{2}$$

a Use Pythagoras to find the height of the triangle. It has a hypotenuse of 10 m and a side of $\frac{12}{2} = 6$ m.

$$50^{2} = x^{2} + 30^{2}$$

 $x^{2} = 50^{2} - 30^{2}$
 $x^{2} = 1600$
 $x = \sqrt{1600}$
 $x = 40$ cm

Convert all measurements to metres.

$$SA = 2 \times \left(\frac{1}{2} \times 0.6 \times 0.4\right) + 2 \times (0.5 \times 1.5)$$
$$= 1.74$$
$$\approx 1.7 \text{ m}^2$$

b

V = Ah

$$= \left(\frac{1}{2} \times 0.6 \times 0.4\right) \times 1.5$$
$$= 0.18 \text{ m}^3$$

∴ Capacity = 0.18×1000 L =180 L

Question 14

a $A = 0.4 \times (0.94) + 0.32 \times (0.62) + 0.3 \times 0.3$ $= 0.6644 \text{ m}^2$ P = 0.3 + 0.3 + 0.32 + 0.32 + 0.32 + 0.40 + 0.94 + 1.02 = 3.92 m h = 1.2 m (given) $\therefore S = 2A + Ph$ $= 2 \times 0.6644 + 3.92 \times 1.2$ = 6.0328 $\approx 6 \text{ m}^2$ **b** V = Ah $= 0.6644 \times 1.2$ = 0.79728 $\approx 0.8 \text{ m}^3$

а

$$V = Ah$$
$$= \left(\frac{1}{2} \times 1.2 \times 1.5\right) \times 2$$
$$= 1.8 \text{ m}^3$$

b Need to find the length of the sides of the tent using Pythagoras. The sides of the triangle are 1.2 m and $(1.5 \text{ m} \div 2 = 0.75 \text{ m})$.

$$x^{2} = 1.2^{2} + (0.75)^{2}$$

$$x^{2} = 2.0025$$

$$x = \sqrt{2.0025}$$

$$x = 1.415... m$$
Area_{side} = 1.415...×2 = 2.83...
Area_{side} = 1.415...×2 = 2.83...
Area_{floor} = 1.5×2 = 3
Area_{back} = $\frac{1}{2}$ ×1.5×1.2 = 0.9
Area_{front} = $\frac{1}{2}$ ×1.5×1.2 = 0.9
∴ Total area = 2.83...+2.83...+3+0.9+0.9
≈ 10.5 m²

Question 16

a V = Ah= $\left(\frac{1}{2} \times 3 \times 14\right) \times 4$ = 84 cm³

b Use Pythagoras to find the hypotenuse of the triangle. It has sides of 3 cm and 814 cm. $x^2 = 3^2 + 14^2$

 $x^2 = 205$ $x = \sqrt{205}$

Surface area of one wedge:

```
SA = 3×4+4×14.317...+4×14+2×\left(\frac{1}{2}×14×3\right)
= 167.27... cm<sup>2</sup>
= 167.27... ÷100<sup>2</sup> m<sup>2</sup>
= 0.016727... m<sup>2</sup>
5 pots can do 5 m<sup>2</sup>
∴ Number of wedges = 5 ÷ 0.016727...
= 298.9...
∴ Kobi can varnish 298 wedges with five pots.
```

© Cengage Learning Australia Pty Ltd 2017 MATHS11WS17605 www.nelsonnet.com.au

a
$$V = \pi r^2 h$$

 $= \pi \times 7^2 \times 12$
 $= 1847.256...$
 $\approx 1800 \text{ m}^3 \text{ (correct to 2 sig fig)}$
b Change 40 cm to m, i.e., 0.4 m
 $V = \pi r^2 h$
 $= \pi \times 0.4^2 \times 2$
 $= 1.005...$
 $\approx 1.0 \text{ m}^3 \text{ (correct to 2 sig fig)}$
c Radius $= \frac{12}{2} = 6 \text{ cm}$
 $V = \pi r^2 h$
 $= \pi \times 6^2 \times 24$
 $= 2714.336...$

 $\approx 2700 \text{ m}^3$ (correct to 2 sig fig)

Question 2

a
$$SA = 2\pi r^2 + 2\pi rh$$

= $2 \times \pi \times 7^2 + 2 \times \pi \times 7 \times 12$
= 835.66...
 \approx 840 m² (correct to 2 sig fig)
b Change 40 cm to m, i.e., 0.4 m

Change 40 cm to m, i.e., 0.4 m

$$SA = 2\pi r^2 + 2\pi rh$$

$$= 2 \times \pi \times 0.4^2 + 2 \times \pi \times 0.4 \times 2$$

$$= 6.031...$$

$$\approx 6.0 \text{ m}^2$$

c Radius =
$$\frac{12}{2}$$
 = 6 cm
 $SA = 2\pi r^2 + 2\pi rh$
 $= 2 \times \pi \times 6^2 + 2 \times \pi \times 6 \times 24$
 $= 1130.97...$
 $\approx 1100 \text{ cm}^2$

Radius = $\frac{1.3}{2}$ = 0.65 m d Change 20 cm to m, i.e, 0.2 m. $V = \pi r^2 h$ $=\pi \times 0.65^2 \times 0.2$

$$= 0.2654...$$

$$\approx 0.27 \text{ m}^3 \text{ (correct to 2 sig fig)}$$

e
$$V = \pi r^2 h$$
$$= \pi \times 2.4^2 \times 2.4$$
$$= 43.42...$$
$$\approx 43 \text{ m}^3 \text{ (correct to 2 sig fig)}$$

Radius =
$$\frac{1.7}{2}$$
 = 0.85 m
 $V = \pi r^2 h$
 $= \pi \times 0.85^2 \times 1.3$
 $= 2.950...$
 $\approx 3.0 \text{ m}^3$ (correct to 2 sig fig)

d Radius =
$$\frac{1.3}{2} = 0.65 \text{ m}$$

Change 20 cm to m, i.e., 0.2 m
 $SA = 2\pi r^2 + 2\pi rh$
 $= 2 \times \pi \times 0.65^2 + 2 \times \pi \times 0.65 \times 0.2$
 $= 3.471...$
 $\approx 3.5 \text{ m}^2$
e $SA = 2\pi r^2 + 2\pi rh$
 $= 2 \times \pi \times 2.4^2 + 2 \times \pi \times 2.4 \times 2.4$
 $= 72.382...$
 $\approx 72 \text{ m}^2$
f Radius = $\frac{1.7}{2} = 0.85 \text{ m}$
 $SA = 2\pi r^2 + 2\pi rh$
 $= 2 \times \pi \times 0.85^2 + 2 \times \pi \times 0.85 \times 1.3$
 $= 11.482...$
 $\approx 11 \text{ m}^2$

© Cengage Learning Australia Pty Ltd 2017 MATHS11WS17605 www.nelsonnet.com.au

f

a Radius = $\frac{8}{2}$ = 4 cm $V = \pi r^2 h$ $= \pi \times 4^2 \times 6.5$ = 326.725... $\approx 327 \text{ cm}^3$

Question 4

a
$$V = \pi r^2 h$$

= $\pi \times 15^2 \times 10$
= 7068.58...
 $\approx 7100 \text{ cm}^3$

b Radius =
$$\frac{1.2}{2} = 0.6$$
 m
 $V = \frac{1}{2}\pi r^2 h$
 $= \frac{1}{2} \times \pi \times 0.6^2 \times 1.5$
 $= 0.8482...$
 ≈ 0.85 m³

c Radius =
$$\frac{4}{2}$$
 = 2 m
 $V = \frac{1}{2}\pi r^2 h$
 $= \frac{1}{2} \times \pi \times 2^2 \times 5$
 $= 31.415...$
 $\approx 31 \text{ m}^3$

b Engine capacity = $6 \times 326.725...$ = 1960.... cm³ = 1960.... mL = 1960.... ÷ 1000 L = 1.96... L $\approx 2L$

d $R = \frac{11}{2} = 5.5 \text{ cm}$ $r = \frac{8}{2} = 4 \text{ cm}$ Length = 2 m = 200 cm $V = \pi R^2 h - \pi r^2 h$ $= \pi \times 5.5^2 \times 200 - \pi \times 4^2 \times 200$ $= 19\ 006.63... - 10\ 053.09...$ = 8953.53... $\approx 9000 \text{ cm}^3$

$$R \text{ (bottom layer)} = \frac{50}{2} = 25$$

$$r \text{ (top layer)} = \frac{30}{2} = 15$$

Top layer: $SA = \pi r^2 + 2\pi rh$

$$= \pi \times 15^2 + 2 \times \pi \times 15 \times 12$$

$$\approx 1837.83 \text{ cm}^2$$

Bottom layer: $SA = \pi R^2 - \pi r^2 + 2\pi Rh$

$$= \pi \times 25^2 - \pi \times 15^2 + 2 \times \pi \times 25 \times 15$$

$$= 3612.83... \text{ cm}^2$$

:. Area of icing =
$$1837.83... + 3612.83...$$

= $5450...$
 $\approx 5451 \text{ cm}^2$

Question 6

а

$$r = \frac{2}{2} = 1 \text{ m}$$

$$V = \frac{1}{2}\pi r^{2}h$$
$$= \frac{1}{2} \times \pi \times 1^{2} \times 2$$
$$= 3.141...$$
$$\approx 3.1 \text{ m}^{3}$$

b Surface area
$$= \frac{1}{2} (2\pi rh + 2\pi r^{2}) + 2 \times 2$$
$$= \frac{1}{2} (2 \times \pi \times 1 \times 2 + 2 \times \pi \times 1^{2}) + 2 \times 2$$
$$= 13.42...$$
$$\approx 13.4 \text{ m}^{2}$$

a
$$r_{hole} = \frac{4 + 0.5 + 0.5}{2} = 2.5 \text{ m}$$

 $V_{hole} = \pi r^2 h$
 $= \pi \times 2.5^2 \times 2$
 $= 39.269...$
 $\approx 39 \text{ m}^3$
b $r_{tank} = \frac{4}{2} = 2 \text{ m}$
 $V_{tank} = \pi r^2 h$
 $= \pi \times 2^2 \times 2$
 $= 25.1327... \text{ m}^3$
 $= 25.1327... \times 1000 \text{ L}$
 $= 25 \text{ 132.7... L}$
 $\approx 25133 \text{ L}$

$$V_{\text{original}} = \pi r^2 h$$
$$= \pi \times 5^2 \times h$$
$$= 25\pi h$$
$$V_{\text{new}} = \pi r^2 h$$
$$= \pi \times 10^2 \times h$$
$$= 100\pi h$$

$$\frac{V_{\text{new}}}{V_{\text{original}}} = \frac{100\pi h}{25\pi h}$$
$$= 4$$

 \therefore The volume is four times larger.

∴ **C**.

a
$$V = \frac{4}{3}\pi r^3$$

 $= \frac{4}{3} \times \pi \times 42^3$
 $\approx 310\ 000\ \text{km}^3$
b $V = \frac{1}{2} \times \frac{4}{3}\pi r^3$
 $= \frac{1}{2} \times \frac{4}{3}\pi r^3$
 $= \frac{1}{2} \times \frac{4}{3}\pi r^3$
 $\approx 224\ 000\ \text{m}^3$
c $V = \frac{4}{3}\pi r^3$
 $= \frac{4}{3} \times \pi \times 600^3$
 $\approx 9.05 \times 10^8\ \text{m}^3$
d $V = \frac{1}{2} \times \frac{4}{3}\pi r^3$
 $= \frac{4}{3} \times \pi \times 14^3$
 $\approx 9.05\ \text{m}^3$
d $V = \frac{1}{2} \times \frac{4}{3}\pi r^3$
 $= \frac{4}{3} \times \pi \times 14^3$
 $\approx 11\ 500\ \text{m}^3$
d $V = \frac{1}{2} \times \frac{4}{3}\pi r^3$
 $= \frac{4}{3} \times \pi \times 14^3$
 $\approx 11\ 500\ \text{m}^3$
d $V = \frac{1}{2} \times \frac{4}{3}\pi r^3$
 $= \frac{4}{3} \times \pi \times 14^3$
 $\approx 11\ 500\ \text{m}^3$

а	i	Radius of Earth = $12\ 683 \div 2 = 6341.5\ \text{km}$				
		Surface area of Earth = $4\pi r^2$				
	$=4 \times \pi \times 6341.5^2$					
	$= 505 \ 351 \ 847.3 \ \mathrm{km}^2$					
		If $\frac{4}{5}$ is covered by water, then $\frac{1}{5}$ is covered by land.				
	So, Area covered by land = $\frac{1}{5} \times 505351847.3$					
	=101070369.5					
	$\approx 1.011 \times 10^8 \text{ km}^2$					
	ii	$V = \frac{4}{3}\pi r^3$				
		$=\frac{4}{3}\times\pi\times6341.5^{3}$				
		$\approx 1.068 \times 10^{12} \text{ km}^3$				
b	Mass per cubic kilometre = $\frac{5.974 \times 10^{21} \text{ t}}{1.068 \times 10^{12} \text{ km}^3}$					
$\approx 5.592 \times 10^9 \text{ t/km}^3$						
© Cengage Learning Australia Pty Ltd 2017 MATHS11WS17605 www.nelsonnet.com.au						

a
$$V = \frac{1}{2} \times \frac{4}{3} \pi r^3$$

 $= \frac{1}{2} \times \frac{4}{3} \times \pi \times 0.5^3$
 $\approx 0.2618 \text{ m}^3$
 $= 0.2618 \times 1000 \text{ L}$
 $\approx 262 \text{ L}$
b Surface area $= \frac{1}{2} \times 4 \pi r^2$
 $= \frac{1}{2} \times 4 \times \pi \times 0.5^2$
 $\approx 1.57 \text{ m}^2$

Question 4

Surface area of one bauble = $4\pi r^2$ $V_{\text{bauble}} = \frac{4}{3}\pi r^3$ С а $= 4 imes \pi imes 3^2$ $= 113.0973 \dots cm^2$ $=\frac{4}{3}\times\pi\times3^{3}$ S.A of 100 baubles = $113.0973 \dots \times 100$ $\approx 113 \text{ cm}^3$ $= 11 309.73 \dots cm^{2}$ $V_{\rm box} = 6 \times 6 \times 6$ $= 11 \ 309.73 \dots \div 10 \ 000 \ m^2$ b $= 1.130973 \dots m^2$ $= 216 \text{ cm}^{3}$ \therefore Cost to cover 100 baubles = 1.130973...×\$15 $V_{\rm air} = V_{\rm box} - V_{\rm bauble}$ =\$16.964... = 216 - 113≈\$16.96 $=103 \text{ cm}^{3}$

Question 5

$$V = \frac{4}{3}\pi r^{3}$$

$$400 = \frac{4}{3}\pi r^{3}$$

$$400 \times 3 = 4\pi r^{3}$$

$$1200 = 4\pi r^{3}$$

$$\frac{1200}{4\pi} = r^{3}$$

$$r^{3} = 95.4929...$$

$$r = \sqrt[3]{95.4929...}$$

$$r = 4.5707...$$

$$r \approx 4.6$$

The correct answer is **A**.

a
$$V = \frac{4}{3}\pi r^3$$
$$= \frac{4}{3} \times \pi \times 28^3$$
$$\approx 92\ 000\ \mathrm{cm}^3$$

b Surface area = $4\pi r^2$ = $4 \times \pi \times 28^2$ $\approx 9852 \text{ cm}^2$

Each tile covers 1 cm^2 , so it takes 9852 tiles to cover the surface of the ball.

Question 7

a Find the surface area of a sphere rather than that of two half spheres.

Surface area =
$$4\pi r^2$$

= $4 \times \pi \times 0.48^2$
 $\approx 2.9 \text{ m}^2$

- **b** $A = 2 \times \pi r^2$ $= 2 \times \pi \times 0.48^2$ $\approx 1.4 \text{ m}^2$
- **c** Find the volume of one sphere rather than two half spheres.

$$V = \frac{4}{3}\pi r^{3}$$
$$= \frac{4}{3} \times \pi \times 0.48^{3}$$
$$\approx 0.46 \text{ m}^{3}$$

a
$$r = \frac{75}{2} = 37.5 \text{ mm}$$
 $h = 3 \times 75 = 225 \text{ mm}$
 $V_{\text{can}} = \pi r^2 h$
 $= \pi \times 37.5^2 \times 225$
 $= 994 \ 019.55...$
 $\approx 994 \ 020 \text{ mm}^3$
b $V_{\text{balls}} = 3 \times \frac{4\pi}{3} \left(\frac{75}{2}\right)^3 \approx 662 \ 680 \text{ mm}^3$
 $\frac{V_{\text{balls}}}{V_{\text{can}}} = \frac{662 \ 680}{994 \ 020} = \frac{2}{3}$

Roughly 67% of the can's volume is taken up by tennis balls.

c The square-based prism would have a base with side length 75 mm (which is the diameter of a ball) and a height of 225 mm (which is the sum of the diameters of three balls).

$$V = Ah$$

= 75² × 225
= 1 265 625 mm³

d The volume of the cylinder containing the balls is less than that of a square prism containing the balls. The cylinder is the most efficient method of packaging because it contains the least amount of air.

a
$$V = Ah$$

 $= (110 \times 120) \times 130$
 $= 1716\ 000\ \text{mm}^3$
b $r = \frac{20}{2} = 10\ \text{mm}$
 $V_{\text{hole}} = \pi r^2 h$
 $= \pi \times 10^2 \times 130$
 $= 40\ 840.70...\ \text{mm}^3$
 $V_{\text{after drilling}} = 1\ 716\ 000 - 3 \times 40\ 840.70...$
 $= 1\ 593\ 477.8...\ \pm 10^3\ \text{cm}^3$
 $= 1\ 593.4...\ \text{cm}^3$
 $\approx 1\ 593\ \text{cm}^3$
 $\approx 1\ 593\ \text{cm}^3$
 $\approx 1\ 593\ \text{cm}^3$

$$= 7.13...\%$$

$$\approx 7\%$$
d SA = 2 × A_{front} + 2 × A_{side} + 2 × A_{top}

$$= 2 \times 110 \times 120 + 2 \times 130 \times 120 + 2 \times 110 \times 130$$
$$= 86 \ 200 \ \mathrm{m} \ \mathrm{m}^2$$

а

$$r = \frac{38}{2} = 19 \text{ mm}$$

$$V_{\text{whole}} = \pi r^2 h$$

$$= \pi \times 19^2 \times 8.5$$

$$= 9639.9...\text{ cm}^3$$

$$V_{\text{remaining}} = \frac{7}{8} \times 9639.9...$$

$$= 8434.9...$$

$$\approx 8400 \text{ cm}^3$$

b The top and bottom of the slice are both sectors with $\frac{7}{8}$ ^{ths} of the circle.

(NOTE: Could use angle of $\frac{360}{8} = 45^{\circ}$ but still is equal to eighths.)

The sides of the slice are both rectangles with length 19 cm and width 8.5 cm. $\therefore SA = 2 \times A \qquad + A \qquad + 2 \times A$

$$SA = 2 \times A_{\text{sector}} + A_{\text{curved section}} + 2 \times A_{\text{rectangle sides}}$$

= $2 \times \frac{7}{8} \times \pi r^2 + \frac{7}{8} \times 2\pi rh + 2 \times rh$
= $2 \times \frac{7}{8} \times \pi \times 19^2 + \frac{7}{8} \times 2 \times \pi \times 19 \times 8.5 + 2 \times 19 \times 8.5$
= 1984.7...+887.8...+323
= 3195.59...
 $\approx 3200 \text{ cm}^2$

С

$$V_{\text{one sector}} = \frac{7}{8} \times V_{\text{whole}}$$
$$= \frac{1}{8} \times 9639.9...$$
$$= 1204.99...$$
$$\approx 1200 \text{ cm}^3$$

$$d \qquad A = 2 \times A_{\text{sector}} + A_{\text{curved section}}$$
$$= 2 \times \frac{1}{8} \times \pi r^2 + \frac{1}{8} \times 2\pi rh$$
$$= 2 \times \frac{1}{8} \times \pi \times 19^2 + \frac{1}{8} \times 2 \times \pi \times 19 \times 8.5$$
$$= 410.3...$$
$$\approx 410 \text{ cm}^3$$

а

Pool A: Pool B: $A = \pi r^2 + lw$ $A = lw + \frac{1}{2}(a+b)h$ $=\pi \times 1.5^2 + 3 \times 7$ $= 6 \times 1.5 + \frac{1}{2} \times (1.5 + 2) \times 4$ $= 28.068... m^2$ V = Ah $=16 \text{ m}^2$ = 28.068...×1.5 V = Ah $= 42.102...m^{3}$ $=16 \times 3$ = 42.102...×1000 L $= 48 \text{ m}^3$ = 42 102.8... L $= 48 \times 1000 \text{ L}$ ≈ 42 103 L = 48 000 L

b Difference = $48\ 000 - 42\ 103$ = $5897\ L$

.: Pool B by 5897 litres.

c From part **a**:
$$A_{\text{front}} = A_{\text{back}} = 16 \text{ m}^2$$

$$A_{\text{left side}} = 1.5 \times 3$$
$$= 4.5 \text{ m}^2$$
$$A_{\text{right side}} = 2 \times 3$$
$$= 6 \text{ m}^2$$
$$A_{\text{flat bottom}} = 6 \times 3$$
$$= 18 \text{ m}^2$$

 $A_{\text{sloped bottom}} = l \times 3$

Find *l* using Pythagoras' theorem:

$$l = \sqrt{4^{2} + 0.5^{2}}$$
= 4.03... m

$$A_{\text{sloped bottom}} = 4.03... \times 3$$
= 12..09... m²
Tiled area = 16 + 16 + 4.5 + 6 + 18 + 12.09...
= 72.59...
 $\approx 73 \text{ m}^{2}$

b

a Find the height of the triangular cut-out using Pythagoras' theorem.

$$h = \sqrt{20^{2} - 10^{2}}$$

$$\approx 17.32... cm$$

$$A_{\text{front face}} = A_{\text{rectangle}} - A_{\text{triangle}}$$

$$= 40 \times 68 - \frac{1}{2} \times 20 \times 17.32...$$

$$= 2546.79... cm^{2}$$

$$V = Ah$$

$$= 2546.79... cm^{3}$$

$$= 305 615.39 + 100^{3} \text{ m}^{3}$$

$$= 0.3056... \text{ m}^{3}$$

$$\approx 0.31 \text{ m}^{3}$$

$$A_{\text{front}} = 2546.79... cm^{2}$$

$$A_{\text{bottom}} = 68 \times 120$$

$$= 8160 \text{ cm}^{2}$$

$$A_{\text{side}} = 40 \times 120$$

$$= 2880 \text{ cm}^{2}$$

$$A_{\text{top white}} = 24 \times 120$$

$$= 2880 \text{ cm}^{2}$$

$$A_{\text{top green}} = 20 \times 120$$

$$= 2400 \text{ cm}^{2}$$

$$SA = 2 \times A_{\text{front}} + A_{\text{bottom}} + 2 \times A_{\text{side}} + 2 \times A_{\text{top white}} + 2 \times A_{\text{top green}}$$

$$= 2 \times 2546.79... + 8160 + 2 \times 4800 + 2 \times 2880 + 2 \times 2400$$

$$= 33 413.5...$$

$$\approx 33 414 \text{ cm}^{2}$$

© Cengage Learning Australia Pty Ltd 2017 MATHS11WS17605 www.nelsonnet.com.au

Area of each triangle =
$$\frac{1}{2} \times 16 \times 8.4$$

= 67.2 m²

Area of each side rectangle = 16×3 = 48 m^2

SA of marquee = 4 triangles + 4 rectangles = $4 \times 67.2 + 4 \times 48$ = 460.8 m^2

Sample HSC problem

- **a** 20.7 has 3 significant figures.
- **b** It is written to 1 decimal place so it is correct to ± 0.05 m. The limits of accuracy are: $20.7 \text{ m} \pm 0.05 = 20.65 \text{ m}$ to 20.75 m.

c % error
$$=\frac{0.05}{20.7} \times 100\%$$

= 0.2415...%
 $\approx 0.242\%$

а	$28.5 \text{ km} = 28.5 \times 1000 \text{ m}$	С	$340 \text{ mL} = 340 \div 1000 \text{ L}$
	= 28 500 m		= 0.34 L
b	$6.4 t = 6.4 \times 1000 kg$ = 6400 kg		

Question 2

 $43 \text{ ML} = 43 \times 1000 \text{ kL}$ = 43 000 L

Question 3

- **a** Absolute error: ± 0.005 m
- **b** Limits of accuracy: $3.66 \pm 0.005 = 3.655$ to 3.665 m

c Percentage error
$$=\frac{0.005}{3.66} \times 100\% = 0.14\%$$

Question 4

To two significant figures:

- **a** 38.915 becomes 39
- **b** 1036 becomes 1000

d 6 587 200 becomes 6 600 00

С

0.00872 becomes 0.0087

Question 5

 $8350\ 000\ 000 = 8.35 \times 10^9$

Question 6

 $4.6 \times 10^{\text{-6}} \!=\! 0.000\;004\;6\;mm$

a Perimeter = 9 + 8 + 9 + 2 + 3 + 4 + 3 + 2= 40 m

b Need to find the unknown side using Pythagoras. The sides of the triangle are 52 cm and (119 cm - 80 cm = 39 cm).

$$x^{2} = 52^{2} + 39^{2}$$

 $x^{2} = 4225$
 $x = \sqrt{4225}$
 $x = 65$ cm

:. Perimeter = 80 + 52 + 119 + 65= 316 cm

c Perimeter =
$$\frac{2 \times \pi \times 7}{4} + 7 + 22 + 15$$

 $\approx 55.00 \text{ cm}$

Question 8

a
$$8400 \text{ mm}^2 = 8400 \div 10^2 \text{ cm}^2$$

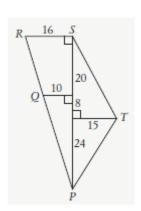
= 84 cm²

b 5.6 ha =
$$5.6 \times 10\ 000\ \text{m}^2$$

= 56 000 m²

a Area =
$$(4 \times 2) + (2 \times 6) + (3 \times 8)$$

= $8 + 12 + 24$
= 44 m^2


b Area =
$$\frac{1}{2}(32+48) \times 26$$

= 1040 cm²

c Area =
$$\pi \times 9.5^2 - \pi \times 4.2^2$$

= 228.11... cm²
 $\approx 230 \text{ cm}^2$

a
$$P = r + r + \frac{\theta}{360} \times 2\pi r$$

 $= 46 + 46 + \frac{35}{360} \times 2 \times \pi \times 46$
 $= 92 + 28.09...$
 $= 120.09...$
 $\approx 120.1 \text{ cm}$
b $A = \frac{\theta}{360} \times \pi r^2$
 $= \frac{35}{360} \times \pi \times 46^2$
 $= 646.29...$
 $\approx 646.3 \text{ cm}^2$

Question 11

a Area
$$1 = \frac{1}{2} \times (16+10) \times 20 = 260$$

Area $2 = \frac{1}{2} \times 10 \times 32 = 160$
Area $3 = \frac{1}{2} \times 28 \times 15 = 210$
Area $4 = \frac{1}{2} \times 15 \times 24 = 180$
Total area $= 260 + 160 + 210 + 180$
 $= 810 \text{ m}^2$
b $810 \text{ m}^2 = 810 \div 10\ 000 \text{ ha}$

b = 0.081 ha

Question 12

20.7 cm³ = 20.7×10^3 mm³ а $= 20 700 \text{ mm}^3$ $1\ 650\ 000\ cm^3\ =\ 1\ 650\ 000\ \div\ 100^3\ m^3$ b $= 1.65 \text{ m}^3$

a i
$$V = 4^2 \times \pi \times 15$$

= 753.982...
 \approx 750 cm³ (correct to 2 sig fig)

ii Area_{side} =
$$8 \times \pi \times 15 = 376.99 \text{ cm}^2$$

Area_{base} =
$$4^2 \times \pi = 50.265 \text{ cm}^2$$

 \therefore Surface area = $2 \times 50.265 + 376.99$
= $477.52... \text{ cm}^2$
 $\approx 480 \text{ cm}^2$ (correct to 2 sig fig)

b i Convert all measurements to metres.

$$V = (\frac{1}{2} \times 0.45 \times 0.48) \times 2$$

= 0.216 m³
\approx 0.22 m³ (correct to 2 sig fig)

ii Area_{front} =
$$\frac{1}{2} \times 0.45 \times 0.48 = 0.108 \text{ m}^2$$

Need to find the unknown side using Pythagoras.

The sides of the triangle are 45 cm and $\frac{48}{2} = 24$ cm.

$$x^{2} = 45^{2} + 24^{2}$$

$$x^{2} = 2601$$

$$x = \sqrt{2601}$$

$$x = 51 \text{ cm}$$

$$= 0.51 \text{ m}$$

Area_{side} = $0.51 \times 2 = 1.02 \text{ m}^{2}$
Area_{top} = $0.48 \times 2 = 0.96 \text{ m}^{2}$
∴ Surface area = $2 \times 0.108 + 2 \times 1.02 + 0.96$

$$= 3.216 \text{ m}^{2}$$

 $\approx 3.2 \text{ m}^{2}$ (correct to 2 sig fig)

- **a** 894 cm³ = 894 mL
- **b** $6.5 \text{ m}^3 = 6.5 \times 1000 \text{ L}$ = 6500 L

a
$$V = \pi \times 1.2^2 \times 1.8$$

= 8.143 m³
 $\approx 8.1 \text{ m}^3$ (correct to 2 sig fig)

b 8.1
$$m^3 = 8.1 \times 1000 L$$

= 8100 L

Question 16

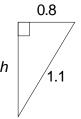
a $A \approx \frac{h}{2} \left(d_f + d_l \right)$ $= \frac{22}{2} \left(6 + 4 \right)$ $= 110 \text{ m}^2$ **b** $A \approx \frac{h}{2} \left(d_f + d_l \right)$ $A \approx A_{\text{left trapezium}} + A_{\text{right trapezium}}$ $= \frac{11}{2} \left(6 + 12 \right) + \frac{11}{2} \left(12 + 4 \right)$ = 99 + 88 $= 187 \text{ m}^2$

c The 187 m^2 is more accurate, because the more applications (trapeziums) we use, the closer the answer is to the exact area of the field.

Find the height of the trapezium. а

Side =
$$\frac{2.9 - 1.3}{2} = 0.8$$

 $h = \sqrt{1.1^2 - 0.8^2}$
 $= \sqrt{0.57}$
 $\approx 0.75... m$
 h
 h
 1.1


Change 90 cm to 0.9 m.

$$A_{\text{top face}} = \frac{1}{2}(a+b)h$$

= $\frac{1}{2} \times (2.9+1.3) \times 0.75...$
= $1.585... \text{ m}^2$
$$A_{\text{front}} = 1.3 \times 0.9$$

= 1.17 cm^2
$$A_{\text{side}} = 1.1 \times 0.9$$

= 0.99 m^2
$$A_{\text{back}} = 2.9 \times 0.9$$

= 2.61 m^2
$$SA = 2 \times A_{\text{top}} + A_{\text{front}} + 2 \times A_{\text{side}} + A_{\text{back}}$$

= $2 \times 1.585... + 1.17 + 2 \times 0.99 + 2.61$
= $8.93...$
 $\approx 8.9 \text{ m}^2$

b

=1.585...×0.9
=1.42...
$$\approx$$
1.4 m³

V = Ah

$$r = \frac{2.8}{2} = 1.4 \text{ m}$$

$$V = \pi r^2 h$$

$$= \pi \times 1.4^2 \times 7$$

$$= 43.1026... \text{ m}^3$$

$$= 43.1026... \times 1000 \text{ L}$$

$$= 43102.65... \text{ L}$$

 \therefore Number of bottles = 43102.65 ... L ÷ 750 mL

(But need to be in same units, so change 750 mL to 0.75 L.)

:. Number of bottles =
$$43102.65 \dots L \div 0.75 L$$

= 57 470.2...
 $\approx 57 470$

a
$$V_{\text{ice}} = V_{\text{outer bowl}} - V_{\text{inner bowl}}$$

= $\frac{1}{2} \times \frac{4}{3} \times \pi \times 11^3 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 8^3$
= 2787.639...-1072.33...
= 1715.309...
 $\approx 1715.31 \text{ cm}^3$

b

$$V_{\text{drink}} = V_{\text{inner bowl}}$$

 $= \frac{1}{2} \times \frac{4}{3} \times \pi \times 8^{3}$
 $= 1072.33... \text{ cm}^{3}$
 $= 1072.33... \text{ mL}$
 $= 1.07233... \text{ L}$
 $\approx 1.07 \text{ L}$

a Volume rectangular prism =
$$(4.8 \times 6.5) \times 5.2$$

$$=162.24 \text{ m}^3$$

Volume of triangular prism = $(\frac{1}{2} \times 4.8 \times 2.7) \times 6.5$ = 42.12 m³

:. Volume of barn =
$$162.24 + 42.12$$

= 204.36 m³
 $\approx 204 \text{ m}^3$

b Area of walls

Area_{side} =
$$6.5 \times 5.2$$

= 33.8
Area_{front} = 4.8×5.2
= 24.96
 \therefore Area_{walls} = $33.8 + 24.96 + 33.8 + 24.96$
= 117.52 m²

Area of roof

Need to find the unknown slant side using Pythagoras. The sides of the triangle are 2.7 m and $\frac{4.8}{2} = 2.4$ m.

$$x^{2} = 2.7^{2} + 2.4^{2}$$

$$x^{2} = 13.05$$

$$x = \sqrt{13.05}$$

$$x = 3.6124... m$$
Area_{a front} = $\frac{1}{2} \times 2.7 \times 4.8$

$$= 6.48$$
Area_{side} = $6.5 \times 3.6124...$

$$= 23.48...$$
 \therefore Area_{walls} = $6.48 + 23.48 + 6.48 + 23.48$

$$= 59.92 m^{2}$$
 \therefore Total Area = $59.92 + 117.52$

$$= 177.44 m^{2}$$
Two coats = 177.44×2

$$= 354.88 m^{2}$$
Number of litres needed = $354.88 \div 14$

$$= 25.34...$$
 $\approx 26 L$

© Cengage Learning Australia Pty Ltd 2017

a Shape of front is a semi-circle with radius $\frac{10}{2} = 5$ cm and a rectangle that is 10 cm by 18-5=13 cm.

Area_{face} =
$$\frac{1}{2} \times \pi \times 5^2 + 10 \times 13$$

= 39.269...+130
= 169.269...
∴ V = Ah
= 169.269...×28
= 4739.55...
≈ 4700 cm³ (correct to 2 sig fig)

b Length of crust

=13+10+13+circumference of semi-circle

$$= 36 + \frac{1}{2} \times 2 \times \pi \times 5$$

= 36 + 15.707...

 \approx 52 cm (correct to 2 sig fig)