

Name:

TOPIC TEST

Interest and depreciation

- Time allowed: 45 minutes
- Part A: 20 multiple-choice questions (20 marks)
- Part B: 6 free-response questions (30 marks)

Part A

20 multiple-choice questions 1 mark each: 20 marks Circle the correct answer.

1 The price *P* of a lawn mower changed twice. The final price was calculated as $P \times 1.3 \times 0.8$.

This can be described as:

- A an increase of 30% then a decrease of 8%
- **B** an increase of 30% then a decrease of 2%
- **C** an increase of 30% then a decrease of 20%
- **D** an increase of 3% then a decrease of 20%
- 2 The price of a whisper kettle normally selling for \$210 is increased by 6%, then decreased at a sale by 9.5%. The correct calculation for the final price is:
 - **A** $210 \times 1.6 \times 0.905$
 - **B** 210 × 1.06 × 0.905
 - **c** 210 × 1.06 × 1.095
 - **D** $210 \times 1.06 \times 0.915$

- **3** Which overall percentage change is equivalent to an increase of 4% followed by a decrease of 2%?
 - A 2% increase
 - B 1.92% increase
 - **C** 1.92% decrease
 - **D** 3.72% increase
- **4** What is the simple interest earned when \$8900 is invested at 4.25% p.a. for 3 years?
 - **A** \$1134.75
 - **B** \$113.48
 - **c** \$11 340.75
 - **D** \$11 347.50

- 5 \$6600 is invested for 7 months at a flat rate of 3.25% p.a. What is the value of the investment after this period?
 - **A** \$125.12
 - **B** \$8101.50
 - **C** \$6723.20
 - **D** \$6725.12
- 6 A principal *P* earns \$284.55 interest when invested at a simple interest rate of 2.9% p.a. for 3 years.

What is the correct calculation for *P*?

A
$$P = \frac{284.55}{3 \times 0.029}$$

B $P = \frac{284.55}{3 \times 2.9}$

c
$$P = \frac{3 \times 0.029}{3 \times 0.029}$$

D
$$P = \frac{284.55}{3 \times 0.29}$$

7 Frank earned \$1508.20 simple interest from an investment of \$7650 over 4 years. Calculate the interest rate per annum.

Α	0.05%	В	4.93%
С	2.45%	D	4.7%

- **8** For how long must a sum of \$18 000 be invested at 5.4% p.a. simple interest to grow to \$24 075?
 - **A** 5 years 8 months
 - **B** 6 years 4 months
 - **C** 6 years 3 months
 - **D** 6 years 2.5 months

9 What is the final amount when \$6725 is invested for 4 years at 5.75% p.a. compound interest?

A \$8271.75	B \$8410.34
C \$8605.10	D \$6881.01

- **10** What is the final amount when \$32 400 is invested for 2 years at 6% p.a. compounded monthly?
 - **A** \$36 069.11
 - **B** \$36 404.64
 - **C** \$36 519.98
 - **D** \$36 466.49
- 11 This compound interest table shows the final value (in dollars, correct to three decimal places) when \$1 is invested for six periods at various interest rates per compounding period. Calculate the value of *A*.

Number of periods	1%	5%	7%	9%	10%
6	1.062	1.340	1.500	Α	1.772
A 1.677	В	1.540			
C 1.654		D	1.729		

12 Use the table from question 11 to find the final value when \$4300 is invested for 6 years at 5% p.a. compounded yearly.

A	\$4566.60	В	\$6480
С	\$5762	D	\$5815

13 What amount needs to be invested at 3.2% p.a. compounded annually for 3 years to give a future value of \$15 000?

A \$12 976	B \$13 674.47
C \$13 848.21	D \$13 647.47

- **14** A salary of \$56 400 increases by 2.7% p.a. By how much has the salary increased after 4 years?
 - **A** \$6342.36
 - **B** \$62 742.36
 - **C** \$6091.20
 - **D** \$6519.30
- **15** \$14 300 is invested at 3.5% p.a. for 2 years, interest compounded half-yearly. Calculate the final value of the investment.
 - **A** \$15 318.51
 - **B** \$15 327.58
 - **C** \$15 301
 - **D** \$15 400
- 16 The table shows compounded values of \$1. What is the final value when \$3000 is invested at 4% p.a. for 3 years with interest compounded half-yearly?

	Compounded		
	Interest rate		
Periods	1%	2%	4%
1	1.01	1.02	1.04
2	1.0201	1.0404	1.0816
3	1.0303	1.0612	1.1248
4	1.0406	1.0824	1.1698
5	1.051	1.1041	1.2166
6	1.0615	1.1262	1.2653

- **A** \$3374.40
- **B** \$3795.90
- **C** \$3378.60
- **D** \$3183.60

- 17 A principal of \$5000 is to be invested for 8 years. Which of the following is the best investment option?
 - A 7% p.a. simple interest
 - **B** 6% p.a. compounded annually
 - **C** 5.4% p.a. compounded monthly
 - **D** 5.6% p.a. compounded quarterly
- **18** A car was purchased for \$22 990 and depreciated to \$18 600 after three years under straight-line depreciation. What was the annual depreciation?
 - **A** \$1465.33
 - **B** \$1460
 - **C** \$1463.33
 - **D** \$4390
- 19 A vehicle purchased for \$44 000 depreciated by the straight-line depreciation method. It had lost \$12 600 value after 4 years. What is the vehicle worth after 7 years?
 - **A** \$18 800
 - **B** \$14 600
 - **C** \$22 050
 - **D** \$21 950
- **20** A motorcycle is purchased for \$23 000 and depreciates by \$3100 each year. When, will the motorcycle have \$0 salvage value?
 - A 7 years 4 months
 - **B** 7 years 5 months
 - **C** 7 years 2 months
 - **D** 7 years 6 months

Part B

6 free-response questions 30 marks Show your working where appropriate.

- **21** Indira's electricity bill issued in March 2016 recorded a daily electricity usage of 9.375 kWh. Her daily usage had increased by 4% on the March 2017 bill and then decreased by 12.51% on the March 2018 bill.
 - a Calculate her daily usage on the March 2017 bill.
 - **b** Calculate her daily usage on the March 2018 bill, correct to 2 decimal places.
 - c What is the overall percentage change in daily usage, correct to 2 decimal places?
 - d What is the overall change in usage from March 2016 to March 2018?

[6 marks]

22 Sienna earned \$78.06 simple interest from an investment of \$3840 over 120 days. What was the interest rate per day, correct to three decimal places?

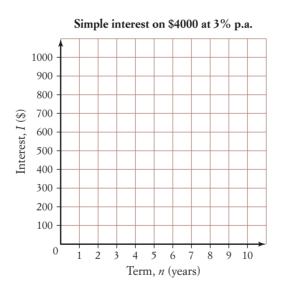
[3 marks]

23 An amount of \$12 500 was invested for 2 years simple interest and grew to \$14 230. Calculate the monthly interest rate.

[3 marks]

24 The final value of an investment after six years at 5.5% p.a. compounded annually is \$12 892.18.

a What principal was invested?

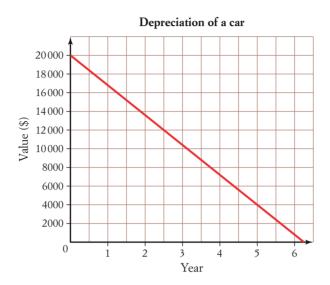

nelsonnet

b How much interest was earned?

[4 marks]

25 A principal of \$4000 is invested in an account that earns 3% p.a. simple interest.

a Construct a graph that shows the simple interest, *I*, earned in dollars for *n* years, for values of *n* from 0 to 8.



- **b** What is the gradient of the line and what does it represent?
- **c** Use the graph to estimate the simple interest earned after $3\frac{1}{2}$ years. (Show your working on the graph).
- **d** Use the graph to estimate when \$900 in interest will be earned. (Show your working on the graph).
- e On the same graph, draw a line that shows the simple interest earned if the rate is changed to 5% p.a.
- f Use your graph to calculate how much more interest is earned after 4 years at the higher rate.

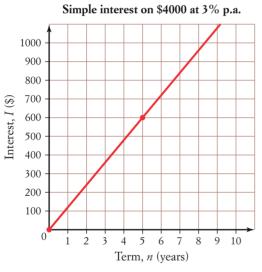
[8 marks]

26 The graph below shows the depreciation of a car over its useful life.

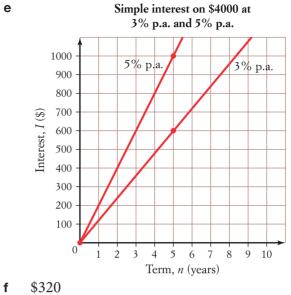
- **a** What was the purchase price of the car?
- **b** What was the salvage value of the car after five years?
- **c** What does the gradient of the line represent?
- **d** What is the annual depreciation?
- e How long did it take for the car to lose 40% of its purchase price?

[6 marks]

This is the end of the test.


Answers

Part A


-							
1	С	2	В	3	В	4	А
5	D	6	А	7	В	8	С
9	В	10	С	11	А	12	С
13	D	14	А	15	В	16	С
17	В	18	С	19	D	20	В

Part B

- **21 a** 9.75 kWh
 - **b** 8.53 kWh
 - c decrease of 9.01%
 - **d** 0.845 kWh
- **22** 0.017%
- **23** 0.576%
- **24 a** \$9350
 - **b** \$3542.18
- 25 a

- **b** 120, the simple interest earned per year.
- **c** \$420
- **d** $7\frac{1}{2}$ years

- **26 a** \$20 000
 - **b** \$4000
 - **c** Amount of depreciation per year
 - **d** \$3200
 - e $2\frac{1}{2}$ years