

Name:_

TOPIC TEST

Driving safely

- Time allowed: 45 minutes
- Part A: 20 multiple-choice questions (20 marks)
- Part B: 9 free-response questions (30 marks)

Part A

20 multiple-choice questions 1 mark each: 20 marks Circle the correct answer.

1 A blood alcohol content (BAC) of 0.04 means the concentration of alcohol in the blood is:

A 4 mg/100 mL	B 0.04 g/100 mL
C 0.04 g/L	D 40 mg/L

- **4** If one standard drink of white wine is 107 mL, how many standard drinks are equivalent to a 150 mL restaurant serve of white wine?
 - A 0.7 standard drinks
 - **B** 0.4 standard drinks
 - C 1.4 standard drinks
 - **D** 1.3 standard drinks
- **2** Samantha weighs 55 kg. If 7% of Samantha's weight is blood, what is her blood volume?

A 3.85 L	B 38.5 L
C 385 mL	D 38.5 mL

3 Reece weighs 84 kg and he consumed five standard drinks in 4 hours. What is his BAC?

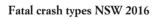
$$BAC_{male} = \frac{10N - 7.5H}{6.8\,M}$$

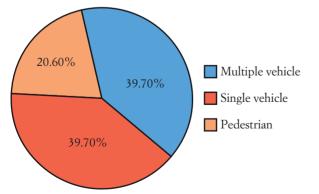
where:

- N = number of standard drinks consumed
- H = number of hours drinking
- M = mass in kilograms
- **A** 0.035 **B** 0.025 **C** 0.04 **D** 0.032

- 5 Rachel has a blood alcohol content of 0.03 and an hourly rate of decrease of alcohol content of 0.013. How long will it take for her BAC to reach zero?
 - A 2 hours 18 minutes
 - **B** 2 hours 30 minutes
 - **C** 3 hours
 - **D** 1 hour 18 minutes

6 Daniel's BAC, *B*, after drinking can be determined using the formula *B* = 0.08 – 0.016*N*, where *N* is the number of hours that have elapsed since drinking. What is Daniel's BAC after 3 hours and 15 minutes?


A 0.0296	B 0.208
C 0.2016	D 0.028


7 This table shows Holly's decline in BAC after drinking. What is the hourly rate of decrease?

Hours	0	0.5	1	1.5
BAC	0.06	0.051	0.042	0.033
A 0.009			В	0.018
C 0.09			D	0.18

8 This sector graph shows fatal road crash types in NSW in 2016.

Crash type	No. of fatal crashes
Multiple vehicle	143
Single vehicle	74
Pedestrian	143

Source: Bureau of Infrastructure, Transport and Regional Economics

The total number of crashes for the year was 360. How many of these were pedestrians?

A 74	B 20.6
C 72	D 80

9 Jeremy is driving a car and travelling at 50 km/h with a reaction time of 1.8 seconds. He sees a child 30 m ahead, recognises the danger and brakes. His braking distance can be calculated by the formula d (metres) = $0.00435v^2$ (d metres, v km/h).

What is Jeremy's reaction-time distance?

A 90 m	B 30 m
C 26.47 m	D 25 m

10 What is Jeremy's stopping distance?

A 10.875 m	B 40.875 m
C 35.875 m	D 37.345 m

11 What is the normal speed limit on a suburban street?

A	40 km/h	В	50 km/h
С	60 km/h	D	70 km/h

- **12** Trisha drove 273 km from Tamworth to Port Macquarie in 3 hours and 25 minutes. What was her average speed?
 - A 84 km/h
 B 80 km/h

 C 78 km/h
 D 79 km/h
- **13** Benson travelled 240 km at an average speed of 90 km/h. How long did the journey take?
 - A 2 hours and 45 minutes
 - **B** 2 hours and 50 minutes
 - **C** 2 hours and 40 minutes
 - **D** 2 hours and 42 minutes

- **14** Lavinia travelled at an average speed of 84 km/h for 1 hour and 50 minutes. How far did she travel?
 - **A** 154 km **B** 134 km
 - **C** 160 km **D** 158 km

Questions **15**, **16** and **17** refer to this table that shows the comparative risks for crashing at different speeds relative to 60 km/h.

Speed (km/h)	Risk relative to 60 km/h
65	Double
70	4 times
75	11 times
80	32 times

15 Maya is driving at a speed of 70 km/h. By how many times does her risk of a crash increase if she drives at 80 km/h instead?

Α	8	B 10
С	32	D 28

16 If the chance of having a crash at 60 km/h is 0.0045, at which speed is the chance 0.009?

A 65 km/h	B 70 km/h
C 75 km/h	D 80 km/h

- 17 Which statement about the given table is false?
 - A This information could be represented on a column graph.
 - **B** The risk at 75 km/h is over 10 times the risk at 60 km/h.
 - **C** Increasing the speed by 5 km/h from 75 km/h more than doubles the chance of a crash.
 - **D** The risk of having a crash increases at a constant rate as the speed increases.
- **18** How far will a car travel in one second when travelling at 95 km/h?

A 32 m	B 26.4 m
C 16 m	D 19 m

19 Craig stepped on his brake after he saw a car stop suddenly in front of him. He avoided the collision, stopping just in time after travelling 68 m, including 41 m while braking. What was his reaction distance?

A 41 m	B 27 m
C 109 m	D 28 m

20 Filomena has a reaction time of 1.3 seconds. She is travelling at a speed of 14 m/s. What is Filomena's reaction distance?

A 10.8 m	B 15.3 m
C 18.2 m	D 18 m

4 of 8

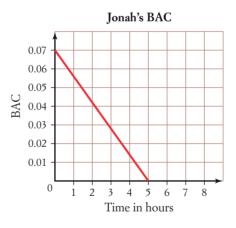
Part B

9 free-response questions 30 marks Show your working where appropriate.

21 The number of standard drinks consumed can be calculated using the formula:

 $N = V \times A \times 0.789$

where


V = volume consumed, in litres

A = % alcohol by volume (mL/100 mL).

Mira consumes five cans (each 375 mL) of beer with 4.8% alcohol. How many standard drinks is this?

[2 marks]

22 This graph shows the rate of decrease of Jonah's BAC after he stopped drinking at 10 p.m.

a What was Jonah's BAC at 10 p.m.?

b At what time did Jonah's BAC return to zero?

c When was Jonah's BAC 0.02?

d What was Jonah's hourly rate of decrease of BAC?

[4 marks]

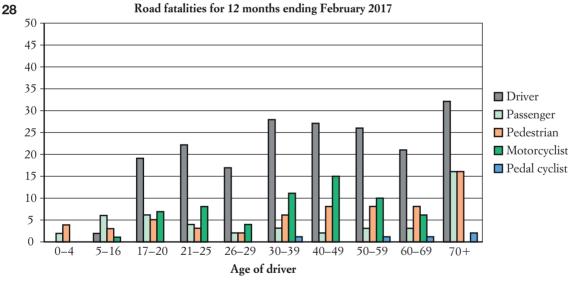
© Cengage Learning Australia Pty Ltd 2017

23 Katie and Michael both weigh 72 kg and bot	th consume 4 standard drinks in 4 hours.
What is the difference (correct to 4 decimal	places) in their BAC levels?

melsonnet

24

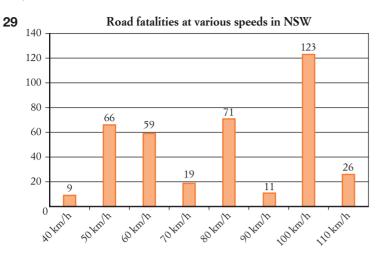
25


26

		[2 marks
	vel 135 km to the same town, leaving at the same time. Miriam averag 0 km/h. How much earlier than Miriam will Ziad arrive?	ges 90 km/h
		[2 marks
car travels 18.5 met	tres in 0.8 seconds. Calculate its speed in km/h.	
		[2 marks
he driving reaction t	times of a sample of 20 people are recorded in this table.	
Reaction time (s)	1.3 1.4 1.5 1.7 2.3	
Reaction time (s) Frequency	$\begin{array}{ c c c c c c c c }\hline 1.3 & 1.4 & 1.5 & 1.7 & 2.3 \\ \hline 4 & 5 & 6 & 3 & 2 \\ \hline \end{array}$	
	1.3 1.4 1.5 1.7 2.3 4 5 6 3 2 un reaction time?	
Reaction time (s) Frequency What is the media: What is the mean r	1.3 1.4 1.5 1.7 2.3 4 5 6 3 2 un reaction time?	

- **27** Tan is driving, travelling at 80 km/h on a wet road and has a reaction time of 1.5 s. He applies his brakes and stops 38 m later.
 - a What was his reaction distance, to the nearest metre?
 - **b** What was his stopping distance?
 - **c** The braking distance formula is $d = kv^2$, where *v* is the initial speed (in km/h) and *d* is the braking distance (in metres). Use the formula to find the value of *k*, correct to three significant figures.
 - **d** State the braking distance, to the nearest metre, when travelling at 90 km/h under the same conditions.

[5 marks]



Source: roadsafety. transport.nsw.gov. au

a Which age groups had the same number of passenger and pedestrian fatalities?

- **b** The total number of fatalities in the 40–49 years age group over the 12-month period was 52. What percentage of fatalities in this age group were motorcyclists?
- **c** How many fatalities were there for motorcyclists aged 70+?

- **a** What percentage of fatalities occurred at speeds of 80 km/h or more?
- **b** At what speed did the median number of fatalities occur?

[4 marks]

This is the end of the test. Use the back for extra working space. 7 of 8

Answers

Part A

1	В	2	А	3	А	4	С
5	А	6	D	7	В	8	А
9	D	10	С	11	В	12	В
13	С	14	А	15	А	16	А
17	D	18	В	19	В	20	С

Part B

- **21** 7.101
- **22 a** 0.07
 - **b** 3 a.m.
 - **c** 3.5 hours
 - **d** 0.014
- **23** 0.0048
- **24** 9 min
- **25** 83.25 km/h
- **26 a** 1.5
 - **b** 1.545
 - **c** 75%
 - d <u>9</u>
 - $\frac{1}{20}$
- **27 a** 33 m
 - **b** 71 m
 - **c** 0.005 94
 - **d** 48 m
- **28** a 26–29, 70+
 - **b** 28.8%
 - **c** none
- **29** a 60.2%
 - **b** 80 km/h