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 1994, Vol. 25, No. 2, 116-140

 DUALITY, AMBIGUITY, AND FLEXIBILITY:
 A "PROCEPTUAL" VIEW OF SIMPLE ARITHMETIC

 EDDIE M. GRAY, University of Warwick, UK
 DAVID O. TALL, University of Warwick, UK

 In this paper we consider the duality between process and concept in mathematics, in
 particular, using the same symbolism to represent both a process (such as the addition
 of two numbers 3 + 2) and the product of that process (the sum 3 + 2). The ambiguity of
 notation allows the successful thinker the flexibility in thought to move between the
 process to carry out a mathematical task and the concept to be mentally manipulated as
 part of a wider mental schema. Symbolism that inherently represents the amalgam of
 process/concept ambiguity we call a "procept." We hypothesize that the successful
 mathematical thinker uses a mental structure that is manifest in the ability to think pro-
 ceptually. We give empirical evidence from simple arithmetic to support the hypothesis
 that there is a qualitatively different kind of mathematical thought displayed by the
 more able thinker compared to that of the less able one. The less able are doing a more
 difficult form of mathematics, which eventually causes a divergence in performance
 between them and their more successful peers.

 INTRODUCTION

 I remember as a child, in fifth grade, coming to the amazing (to me) realization
 that the answer to 134 divided by 29 is 134/29 (and so forth). What a tremendous
 labor-saving device! To me, "134 divided by 29" meant a certain tedious chore,
 while 134/29 was an object with no implicit work. I went excitedly to my father to
 explain my major discovery. He told me that of course this is so, a/b and a
 divided by b are just synonyms. To him it was just a small variation in notation.

 -William P. Thurston, Fields Medallist, 1990

 Mathematics has been notorious over the centuries for the fact that so many
 of the population fail to understand what a small minority regard as being
 almost trivially simple. In this article we look at the way in which mathe-
 matical ideas are developed by learners and come to the conclusion that the
 reason why some succeed and a great many fail lies in the fact that the more
 able are doing qualitatively different mathematics from the less able. The
 mathematics of the more able is conceived in such a way as to be-for them
 -relatively simple, whereas the less able are doing a different kind of
 mathematics that is often intolerably hard. "A small variation in notation"
 will be seen to hide a huge gulf in thinking between those who succeed and
 those who eventually fail.

 PROCESS AND PROCEDURE

 It will prove fruitful in our discussion to distinguish between our use of
 the terms process and procedure. The term process will be used in a general
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 sense, as in the "process of addition," the "process of multiplication," and
 the "process of solving an equation," to mean the cognitive representation
 of a mathematical operation. It need not be a process that is currently being
 carried out in thought; for instance, we may speak of the process of addition
 without actually performing it. Nor is there any implication that the process
 must be carried out in a unique manner (e.g., the process of addition may be
 carried out by counting, by subitizing, by deduction from known facts, or
 by some other method). Flexibility in carrying out a process will play a fun-
 damental role in our theory. We will use the term procedure in the sense of
 Davis (1983); it is a specific algorithm for implementing a process. For
 example, we see "count-on" as a procedure used to carry out the process of
 addition, which may be spontaneously constructed and "invented" by chil-
 dren (Baroody & Ginsburg, 1986), "personalised" (Gray, 1991), or taught
 (Fuson & Fuson, 1992).

 THE PERCEIVED DICHOTOMY BETWEEN

 PROCEDURE AND CONCEPT

 Hardly a decade passes without concern being expressed over the general
 level of children's attainment in mathematics, the quality of their learning,
 or the nature of the mathematics curriculum. In the U.S. the NCTM Stan-

 dards (1989) reflect the perceived need to improve children's performance.
 Within the United Kingdom the imposition of a National Curriculum (1989)
 is aimed at raising standards of performance in all subjects, including math-
 ematics. The requirements of this curriculum distinguish between the skills
 or procedures that individuals need to have acquired in order to do things,
 and the concepts or basic facts, which they are expected to know, on which
 they operate with their skills. This suggests a fundamental dichotomy
 between procedures and concepts, between things to do and things to know.
 However, in mathematics, we shall see that the truth is somewhat different.

 Procedural aspects of mathematics focus on routine manipulation of
 objects that are represented either by concrete materials, spoken words,
 written symbols, or mental images. It is relatively easy to see if such proce-
 dures are carried out adequately, and performance in similar tasks is often
 taken as a measure of attainment in these skills.

 Conceptual knowledge, however, is harder to assess. It is knowledge that
 is rich in relationships. Hiebert and Lefevre (1986) describe conceptual
 knowledge as

 a connected web ... a network in which the linking relationships are as promi-
 nent as the discrete pieces of information.... A unit of conceptual knowledge
 cannot be an isolated piece of information; by definition it is part of conceptual
 knowledge only if the holder recognizes its relationship to other pieces of infor-
 mation. (pp. 3-4)
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 118 Duality, Ambiguity, and Flexibility

 Flexible thinking using conceptual knowledge is likely to be very differ-
 ent from thinking based on inflexible procedures. Yet procedures still form
 a basic part of mathematical development. Piaget (1985, p. 49) speaks of
 the way in which "actions or operations become thematized objects of
 thought or assimilation." What is important is the cognitive shift from
 mathematical processes into manipulable mental objects.

 PROCESS BECOMING CONCEIVED AS CONCEPT

 The notion of actions or processes becoming conceived as mental objects has
 featured continually in the literature. Dienes (1960) uses a grammatical
 metaphor to describe how a predicate (or action) becomes the subject of a fur-
 ther predicate, which may in turn become the subject of another. He claims that

 people who are good at taming predicates and reducing them to a state of sub-
 jection are good mathematicians. (p. 21)

 In an analogous way, Greeno (1983) defines a "conceptual entity" as a
 cognitive object that can be manipulated as the input to a mental procedure.
 The cognitive process of forming a (static) conceptual entity from a
 (dynamic) process has variously been called "entification" (Kaput, 1982),
 "reification" (Sfard, 1989, 1991), and "encapsulation" (Dubinsky, 1991).
 We shall use these terms interchangeably in the remainder of the article,
 favoring the word encapsulation.
 Encapsulation is seen as operating on successively higher levels (Piaget,

 1972) so that

 the whole of mathematics may therefore be thought of in terms of the construc-
 tion of structures, ... mathematical entities move from one level to another; an
 operation on such "entities" becomes in its turn an object of the theory, and this
 process is repeated until we reach structures that are alternately structuring or
 being structured by "stronger" structures. (p. 70)

 From the viewpoint of a professional mathematician (Thurston, 1990):

 Mathematics is amazingly compressible: you may struggle a long time, step by
 step, to work through some process or idea from several approaches. But once
 you really understand it and have the mental perspective to see it as a whole,
 there is often a tremendous mental compression. You can file it away, recall it
 quickly and completely when you need it, and use it as just one step in some
 other mental process. The insight that goes with this compression is one of the
 real joys of mathematics. (p. 847)

 Sfard (1991) expresses the way in which the stratification occurs by talk-
 ing about operational mathematics, in which the operations at one level
 become reified as objects to become basic units of a higher level theory. We
 now provide a perspective on the encapsulation of process as object through
 an analysis of simple arithmetic.
 At the foundation of arithmetic is the concept of number and, we suggest,

 the ability to count. There are alternative views (Wohlwill & Lowe, 1962;
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 Piaget, 1952), and we are aware of the different views that attach to chil-
 dren's use of quite small numbers that can be relatively easily subitized and
 directly perceived as properties of a physical collection (Klahr & Wallace,
 1976; Gelman & Gallistel, 1986). However, more recent analysis of the
 development of number concepts indicates that counting plays a sophisticat-
 ed and central role (Wagner & Walters, 1982; Fuson & Hall, 1983; Gelman
 & Meck, 1986). The sequence of number words becomes part of a proce-
 dure to point at successive elements; each number word is uttered in turn
 until the last word is identified as the number of elements in the collection.

 In this manner we see the process of counting encapsulated as the concept
 of number.

 This relationship between the process of counting and the concept of
 number allows us to reconsider the apparent dichotomy between procedural
 and conceptual knowledge and to consider how this relates to the diver-
 gence between inflexible procedures and flexible concepts.

 THE ROLE OF SYMBOLS

 The manner in which symbols are used will play a pivotal role in our dis-
 cussion of the relationship between process and concept. For this purpose
 we regard a symbol as something that is perceived by the senses. It can be
 written or spoken so that it can be seen or heard. What is important about
 the physical representation for our theoretical perspective is the way in
 which it is interpreted by different individuals or by the same individual at
 different times. In particular, we will be interested in the way in which a
 symbol can be conceived as representing a process or an object.
 It is interesting to note that Sinclair and Sinclair (1986) sense that with

 preschool children-for whom written symbolism has yet to be devel-
 oped-the distinction between procedural and conceptual knowledge seems
 far less appropriate. Following Piaget, their discussion focuses once more
 on the theme of action (process) becoming the object of thinking, the
 process becoming the concept.
 Sfard (1989) comments that although processes and objects are ostensibly

 incompatible, they are in fact compatible and can be simultaneously con-
 ceived of as mathematical notions. Yet she asks, "How can anything be a
 process and an object at the same time?" (p. 151)
 We suggest that the answer lies in the way that professional mathemati-

 cians cope with this problem. They employ the simple device of using the
 same notation to represent both a process and the product of that process.
 As Thurston's father noted in the initial quotation, alb and a divided by b
 are just synonyms-a small variation in notation. In practice there is rarely
 a variation; the same notation is used for either a process or the product of
 that process.
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 120 Duality, Ambiguity, and Flexibility

 THE AMBIGUITY OF SYMBOLISM FOR PROCESS AND CONCEPT

 The ambiguous use of symbols for process or product pervades the whole
 of mathematics:

 "* The symbol 5 + 4 represents both the process of adding by counting all
 or counting on and the concept of sum (5 + 4 is 9).

 "* The symbol 4 x 3 can stand for the process of repeated addition, "four
 threes," that must be carried out to obtain the product of four and three,
 which is the number 12.

 "* The symbol 3/4 stands for both the process of division and the concept
 of fraction.

 "* The symbol +4 stands for both the process of "add four," or shift four
 units along the number line, and the concept of the positive number +4
 (initially many educators use different notations such as +4 for the posi-
 tive number and +4 for "add four," but these are usually suppressed at a
 later stage).

 "* The symbol -7 can stand for both the process of "subtract seven," or
 shift seven units in the opposite direction along the number line, and the
 concept of the negative number -7 (again, initially noted as -7).

 "* The algebraic symbol 3x + 2 stands both for the process "add three
 times x and two" and for the product of that process, the expression
 "3x + 2."

 opposite
 "* The trigonometric ratio sine = hypotenuse represents both the process

 for calculating the sine of an angle and its value.

 "* The function notation f(x) = x2 - 3 simultaneously tells both how to calcu-
 late the value of the function for a particular value of x and encapsulates
 the complete concept of the function for a general value of x.

 "* An "infinite" decimal representation n = 3.14159... is both a process of
 approximating nt by calculating ever more decimal places and the spe-
 cific numerical limit of that process.

 "* The notation lim f(x) represents both the process of tending to a limit
 x -- a

 and the concept of the value of the limit, as does
 n b

 lim Sn, lim X ak, and lim IXf(x)8x.
 n-4oo nook=1 x= a

 Mathematicians abhor ambiguity and so they rarely speak of it, yet ambi-
 guity is widely used throughout mathematics. We believe that the ambiguity
 in interpreting symbolism in this flexible way is at the root of successful
 mathematical thinking. We further hypothesize that its absence leads to
 stultifying uses of procedures that need to be remembered as separate
 devices in their own context ("do multiplication before addition," "turn
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 upside down and multiply," "two negatives make a positive," "add the same
 thing to both sides," "change sides, change signs," "cross multiply," etc.)

 We conjecture that the dual use of notation as process and concept
 enables the more able to "tame the processes of mathematics into a state of
 subjection"; instead of having to cope consciously with the duality of con-
 cept and process, the good mathematician thinks ambiguously about the
 symbolism for product and process. We contend that the mathematician
 simplifies matters by replacing the cognitive complexity of process-concept
 duality by the notational convenience of process-product ambiguity.

 THE NOTION OF PROCEPT

 We do not consider that the ambiguity of a symbolism expressing the
 flexible duality of process and concept can be fully utilized if the distinc-
 tion between process and concept is maintained at all times. It is essential
 that we furnish the cognitive combination of process and concept with its
 own terminology. We therefore use the portmanteau word "procept" to refer
 to this amalgam of concept and process represented by the same symbol.
 However, we wish to do this in a way that reflects the cognitive reality.
 We propose the following preliminary definition: An elementary procept

 is the amalgam of three components: a process that produces a mathemati-
 cal object, and a symbol that represents either the process or the object.
 This definition allows the symbolism to evoke either process or concept,

 so that a symbol such as 2 + 3 can be seen to evoke either the process of
 addition of the two numbers or the concept of sum.
 The definition caused us a great deal of heart searching, because we

 wanted it to reflect the observed cognitive reality. In particular, we wanted
 to encompass the growing compressibility of knowledge characteristic of
 successful mathematicians. Here, not only is a single symbol viewed in a
 flexible way, but when the same object can be represented symbolically in
 different ways, these are often seen not only as different processes to give
 the same object but as different names for the same object.

 In order to reflect this growing flexibility of the notion and the versatility
 of the thinking processes we extend the definition as follows: A procept
 consists of a collection of elementary procepts that have the same object.
 In this sense we can talk about the procept 6. It includes the process of

 counting 6 and a collection of other representations such as 3 + 3, 4 + 2,
 2 + 4, 2 x 3, 8 - 2, and so on. All of these symbols may be considered to
 represent the same object, yet indicate the flexible way in which 6 may be
 decomposed and recomposed using different processes.
 We are well aware that mathematically we could put an equivalence rela-

 tion on elementary procepts, to say that two are equivalent if they have the
 same object and then define a procept to be an equivalence class of elemen-
 tary procepts. However, we feel that this kind of mathematical precision
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 overcomplicates the cognitive reality. The nature of the procept is depen-
 dent on the cognitive growth of the child. It starts out with a simple
 structure and grows in interiority in the sense of Skemp (1979). We see an
 elementary procept as the first stage in the dynamic growth of a procept,
 rather than an element in an equivalence class.
 We see number initially as an elementary procept. A symbol such as 3

 evokes both the counting process "one, two, three" and the number itself.
 The word three (and its accompanying symbol 3) can be spoken, it can be
 heard, it can be written, and it can be read. These forms of communication
 allow the symbol to be shared in such a way that it has, or seems to have, its
 own shared reality. Three is an abstract concept, but through using it in
 communication and acting upon it with the operations of arithmetic, it takes
 on a role as real as any physical object.
 The symbol 3 grows in richness of meaning, inextricably linking both

 procedural and conceptual aspects. It includes the procedural aspects of
 counting and the conceptual relationships in which the same object is repre-
 sented by different symbols; 1 + 1 + 1, 2 + 1, 1 + 2, and 4 - 1 all have an
 output 3 and together form part of the procept 3. They allow the number 3
 to be decomposed and recomposed in a variety of ways reflecting the differ-
 ent processes available to produce the same object.
 In this way the various different forms combine to give a rich conceptual

 structure in which the symbol 3 expresses all these links, the conceptual
 ones and the procedural ones, the processes and the product of those
 processes. The combination of conceptual and procedural thinking in this
 manner we term proceptual thinking.

 THE GROWTH OF PROCEPTUAL THINKING IN ARITHMETIC

 The procedural and conceptual approaches that children use to form the
 sum of two or more amounts introduced through word problems have been
 well documented (e.g., Fuson, 1982; Carpenter, Hiebert, & Moser, 1981,
 1982). Translating some or all of these approaches into a conceptual hierar-
 chy for addition formed part of the focus of these and other studies
 (Herscovics & Bergeron, 1983; Secada, Fuson, & Hall, 1983; Gray, 1991;
 Fuson & Fuson, 1992).

 These approaches for finding a sum involve a number of different proce-
 dures, including "count-all" (count each set separately then count the two
 together), "count-on from first" (count-on the number of elements in the
 second set, starting from the number in the first set), "count-on from
 largest" (put the larger set first and count-on the smaller number of ele-
 ments in the second set), together with higher-order strategies, such as
 "knowing the fact" or "deriving new facts from known facts." There are
 corresponding procedures for subtraction: "take-away" (count the big set,
 count the subset to be taken away, then count the set that remains), "count-
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 back" (start from the larger number and count-back down the number
 sequence to find the number remaining), "count-up" (start from the number
 to be taken away and count-up to the number given), together with higher-
 order strategies, either "knowing the facts" or "deriving" the facts.
 Even finer gradations of these categories have been proposed and can be

 helpful in distinguishing children's thinking processes. However, here we
 wish to use the notion of procept to conceptualize the cognitive develop-
 ment in an integrated manner, referring only to the growing facility for
 compression of ideas from procedures of counting to the procept of number.
 Using the summary given by Carpenter et al. (1981) and resorting to

 reanalysis of the evidence given by Gray (1991) we specify that the proce-
 dure of count-all consists of three separate subprocedures: count the first
 set, count the second set, then combine the sets as a single set and count all
 the objects (Figure 1).
 We conjecture that the most salient memory that the child has of this

 process is the final object counted. This represents the value of the set that
 is the union of two sets formed from the two subprocedures, which involved
 counting two and counting three. The total of this set, five, is the last point
 of reference for the child. Because such a procedure occurs in time, it is
 hypothesized that any proceptual relationship between the input (3 plus 2)
 and the output (5) is likely to be obscured by the lengthy counting routine
 used to obtain the solution. The nature of such a procedure can mitigate
 against the encapsulation of 3 + 2 = 5 as a known fact. We suggest, then,
 that count-all is a procedure that extends the counting process and is unlike-
 ly to lead directly to an encapsulated procept.
 The count-on procedure is a more sophisticated strategy than count-all (e.g.,

 Secada, et al., 1983; Carpenter, 1986; Baroody & Ginsburg, 1986; Gray,
 1991). The notion of elementary procepts helps our analysis of the procedure.
 To one number a second is added through a count-on procedure. (It is actually
 a sophisticated double counting procedure where 3 + 2 involves saying "four,

 Count-all

 Three plus two is one two three one two

 Procedure plus Procedure

 giving ? ? ?
 one two three four five

 Procedure I

 Figure 1. Count-all as a combination of procedures.

This content downloaded from 138.25.78.25 on Wed, 03 Apr 2019 22:48:20 UTC
All use subject to https://about.jstor.org/terms



 124 Duality, Ambiguity, and Flexibility

 five" while simultaneously keeping track that "two" extra numbers are being
 counted.) We therefore see count-on as "elementary procept plus procedure":
 one number is incremented in ones to form a successive series of elementary
 procepts through a counting procedure (Figure 2).

 Count-on

 Z9 o) 0 0
 Three plus two is (three) four five

 Procept I plus Procedure

 Figure 2. Counting-on as procept plus procedure.

 We believe that count-on as a procedure can have two qualitatively dif-
 ferent outcomes, as a (counting) procedure of addition or as the procept of
 sum.

 1. Count-on as procedure is essentially a compression of count-all into a
 shorter procedure. It remains a procedure that takes place in time so that the
 child is able to compute the result without necessarily linking input and out-
 put in a form that will be remembered as a new fact. Some children-often
 with a limited array of known facts-may become so efficient in counting
 that they use it as a universal method that does not involve them in the risk
 of attempting to use a limited number of known facts (see also Steinberg,
 1985).

 2. Count-on leading to procept produces a result that is seen both as a
 counting procedure and a number concept. The notation 3 + 2 is seen to rep-
 resent both the process of addition and the result of that process, the sum.

 When input numbers and their sum can be held in the mind simultaneous-
 ly then the result is a meaningful, known fact that may be envisioned as a
 flexible combination of procept and procept to give a procept (Figure 3).

 Known fact

 ( 0 0) (0 ) (00ooo)
 Three plus two is 3 + 2 = 5

 Procept plus Procept

 Figure 3. (Meaningful) known fact as procept plus procept.
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 It is important here to distinguish between a meaningful known fact gen-
 erated by this flexible form of thinking and a fact that is remembered by
 rote. In any isolated incident such a distinction may be hard to make. The
 difference is more apparent when such facts are decomposed and recom-
 posed to give derived facts. Merely knowing facts does not necessarily lead
 to deriving facts, as we shall see shortly. But the language used by children
 who do derive facts shows that they freely decompose and recompose the
 component parts in a proceptual way. For instance, faced with "four and
 five," one may know that "four and four makes eight," and respond that it is
 "one more," which is "nine." Some facts such as, for example, "16 + 3 is
 19" based on "6 + 3 is 9," can be derived so fast that the process is virtually
 instantaneous. On occasion it may be difficult to distinguish between a
 known fact and a quickly constructed derived fact.
 The need for flexibility in arithmetic is a regular feature in the literature.

 For instance, Fuson, Richards, and Briars (1982) and Steffe, von Glasersfeld,
 Richards, and Cobb (1983) suggest that the use of a sequence of number
 words for the solution of addition and subtraction problems leads to the
 understanding that addition and subtraction are inverse operations, and this
 contributes to the flexibility of solving addition and subtraction problems.
 However, proceptual flexibility gives new insight. The existence of flexible
 proceptual knowledge means not only that the number 5 can be seen as 3 + 2
 or 2 + 3 but that if 3 and something makes 5, then the something must be 2.
 In proceptual thinking, addition and subtraction are so closely linked that
 subtraction is simply a flexible reorganization of addition facts.
 In proceptual thinking, addition as count-on is considered to have subtrac-

 tion as its inverse through count-back or count-up. We shall see that less
 successful children often favor count-back as the natural reverse process
 even though its cognitive complexity is enormous. The child must count the
 number sequence in reverse starting from the larger number and keep track
 simultaneously of how many numbers have been counted. To obtain the solu-
 tion to an arithmetical problem such as 16 - 13 = by count-back requires
 the recitation of 13 numbers in reverse order from 16 down. Such proce-
 dures, especially when carried out by less successful children, often result in
 error. Because the proceptual thinker has a simpler task than the procedural
 thinker, the likely divergence between success and failure is widened.
 The fundamentally different ways of thinking exhibited by children per-

 forming arithmetic, usually represented by the terms procedural and
 conceptual, may be described more incisively as procedural and proceptual.
 Proceptual thinking includes the use of procedures. However, it also includes
 the flexible facility to view symbolism either as a trigger for carrying out a
 procedure or as the representation of a mental object that may be decom-
 posed, recomposed, and manipulated at a higher level. This ambiguous use
 of symbolism is at the root of powerful mathematical thinking and makes it
 possible to overcome the limited capacity of short-term memory. It enables a
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 symbol to be maintained in short-term memory in a compact form for mental
 manipulation or to trigger a sequence of actions in time to carry out a mathe-
 matical process. It includes both concepts to know and processes to do.

 QUALITATIVELY DIFFERENT APPROACHES TO
 SIMPLE ARITHMETIC

 The evidence of qualitatively different approaches that can be interpreted
 using the notion of procept arises from data collected by Gray (1991). He
 interviewed a cross-section of children aged 7 to 12 from two mixed-ability
 English schools to discern their methods of carrying out simple arithmetic
 exercises. Toward the end of the school year, when the teachers had devel-
 oped intimate knowledge of the children for over 6 months, he asked the
 teachers of each class to divide their children into three groups-"above
 average," "average," and "below average" according to their performance of
 arithmetic-and to select two children from each group who were "represen-
 tative" of each group. The two schools each provided 6 children from each of
 six year groups, making 72 children in all, 12 from each year divided into
 three groups of 4 children according to their teachers' perceptions of their
 performance in arithmetic. In what follows we shall refer to the year groups
 by age, so that, for instance, 9+ refers to children who would be nine during
 the school year. They were interviewed over a 2-month period starting
 6 months after the beginning of the year, so at the time of interview a child
 designated as 9+ would be in the range 8 years 6 months to 9 years 8 months.
 Figures 4 and 5 consider the types of response made by the above-average

 and the below-average children to a range of addition and subtraction prob-
 lems subdivided into three levels. Figure 4 (adapted from Gray & Tall,
 1991) illustrates the responses to the three categories of addition problems
 considered:

 A: Single-digit addition with a sum of 10 or less (e.g., 6 + 3, 3 + 5)

 B: Addition of a single-digit number to a teen number, the sum being
 20 or less (e.g., 18 + 2, 13 + 5)

 C: Addition of two single-digit numbers with a sum between 11 and
 20 (e.g., 4 + 7, 9 + 8)

 (In the figure each of these three categories is represented for the three
 ability groups at each age. For instance, of children aged 8+ in category B,
 those above average obtained 30% of the solutions through known facts,
 61% through derived facts, and 9% through count-on. In contrast, the
 below-average children of the same age obtained 6% of category B solu-
 tions through known fact, 72% through count-on, and 22% through
 count-all.)

 The striking difference between the two groups is seen by a comparison
 of the use of procedural methods (counting) and the use of derived facts.
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 A B CA B CA B CA B CA B CA B C

 Cumulative 100

 Strategy 90
 Use 80

 7 Above-average
 60 ability children
 50

 40

 30

 20

 10

 % 7+ 8+ 9+ 10+ 11+ 12+ Age
 100

 90

 80

 70 Below-average
 60 ability children
 50

 40

 30

 20

 10

 0

 A B CA B CA B CA B CA B CA B C

 Addition combinations: Known facts I'" Derived facts
 A: Combinations to 10

 B: From 10 to 20 (addition to teens) I Count-on l Count-all
 C: From 10 to 20 (single digit addition) Errors

 Figure 4. Strategies used to obtain solutions to simple addition combinations by groups of
 below-average and above-average children of different ages.

 Note that when count-all is used fairly extensively, then derived facts hard-
 ly occur. Apart from three exceptions-a single instance at 7+ and two at
 10+, all of whom derived the solution to 4 + 5,-no below-average child
 provides any further evidence of the use of derived facts to obtain solutions
 to category A (single-digit problems less than 10). Indeed, even the derived
 solution to 4 + 5 was almost procedural: "I always do this one by adding 4
 and 4 and 1 more." The above-average children make pertinent use of
 derived facts in category A, particularly at age 8+, where there is an explo-
 sion in their use within every category.

 In most cases the 7+ below-average children were unable to use any
 appropriate method to obtain correct solutions for the category B and C
 problems. Older children invariably used counting techniques to solve cate-
 gory B and C problems, even when they knew the answer to the
 corresponding category A problem. (For instance, they might know 4 + 4,
 yet count 14 + 4.)

 In sharp contrast, few above-average children counted category B prob-
 lems. Faced with a problem such as 15 + 4, they either knew 5 + 4 is 9 and
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 A B CA B CA B CA B CA B CA B C
 %

 Cumulative 100
 Strategy 90
 Use 80
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 60' Above-average
 50 ability children
 40

 30

 20

 10

 0

 % 7+ 8+ 9+ 1 1+ 1+ Age
 100
 90

 80

 70

 60 Below-average
 50 ability children

 40

 30

 20

 10

 A B CA B CA B CA B CA B CA B C

 Subtraction combinations: Known facts I Derived facts
 A: Combinations to 10

 B: From 10 to 20 (single-digit subtrahend) Count-up/back i Take-away
 C: From 10 to 20 (two-digit subtrahend) E Errors

 Figure 5. Strategies used to obtain solutions to simple subtraction combinations by groups
 of below-average and above-average children of different ages.

 added 10 to get 19, or they derived the value of 5 + 4 by, for instance,
 knowing "two fives are ten" so 5 + 4 is 9 and adding 10. The below-average
 children remembered almost no category C combinations, the single excep-
 tion being 9 + 8, which several below-average students aged 11+ and 12+
 derived by knowing 9 + 9.

 Figure 5 (adapted from Gray & Tall, 1991) concentrates on three cate-
 gories of subtraction:

 A: Single-digit subtraction (e.g., 8 - 2)

 B: Subtraction of a single-digit number from a number between 10
 and 20 (e.g., 16 - 3, 15 - 9)

 C: Subtraction of one two-digit number between 10 and 20 from
 another (e.g., 16 - 10, 19 - 17)

 Once again categories including take-away (the subtraction equivalent of
 count-all) have few instances of derived facts. The apparent exception
 among the above-average 7-year-olds is provided by one child who gave all
 the examples of take-away in category A. Where he needed to use procedural
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 methods in the other categories this child used count-back for combinations
 such as 13 - 2 and 16 - 3 but count-up for those such as 15 - 9 and 17 - 13.
 Note the low incidence of known facts among the 7+ and 8+ below-average
 children and the related absence of derived facts; wherever derived facts are
 used by these children in category A it is once again the near double 9 - 5
 that provides the stimulus. Meanwhile the 8+ above-average children once
 again have over 50% known facts in category A and a high incidence of
 derived facts in all three categories. With a good knowledge of subtraction
 facts to 10, these more successful children are able to derive almost every-
 thing they do not know and only occasionally resort to counting.
 We see that the 10+ below-average group, sometimes called slow learners

 in the U.K., appear to possess the same profile of known facts as the 8+
 above-average group, but they do not use these facts in the same way. The
 above-average 8+ children derive most facts that they do not know; the
 below-average 10+ children derive no facts in category C and only occasion-
 al facts in categories A and B. Instead, they count. We suggest that the phrase
 "slow learners" is therefore a misnomer. The less able do not simply learn the
 same techniques more slowly. They develop different techniques. Through-
 out the age range the above-average show a high incidence of known facts,
 and nearly everything they do not know they derive. The below-average stu-
 dents rarely use derived facts; instead, they almost always count.
 We conjecture that the differences in behavior between the above- and

 below-average groups is caused by what we term the proceptual divide.
 Proceptual thinking includes the meaningful use of known facts to arrive at
 solutions through derived facts. It may also include the use of a procedure.
 A single-item analysis of children's responses may not be sufficient to
 allow a distinction to be made-how do we distinguish between a rote
 learned fact and a meaningful known fact? If a child uses a procedure to
 solve one problem, does that mean that the next problem will also be solved
 procedurally? Only through analysis of the solution strategies to a range of
 problems may we get our answer. We may then see either the flexibility,
 which is a keynote of the proceptual interplay between conceptual and pro-
 cedural methods, or the limitations imposed by the reliance on fixed
 counting procedures. The latter often provide considerable success at one
 level but may ultimately lack the generality to lead to success in more
 sophisticated problems.
 Careful reconsideration of the individual data shows that not only do the

 less able count more, there is even a difference between the two groups in
 how they count. The below-average group nearly always selected count-
 back as the natural procedure for take-away, so that 19 - 17 is likely to be
 calculated by laboriously counting back 17 from 19, a procedure that usual-
 ly ends in failure (particularly among the younger children). When the
 above-average children counted, they were more likely to select the more
 appropriate strategy, in this case counting up from 17 to 19.
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 Empirical evidence therefore supports the hypothesis that the more able
 tend to display more flexible proceptual techniques (including the selection
 of more appropriate procedures), whereas the less able rely on less flexible
 procedural methods of counting.

 INDIVIDUAL CASES

 Individual examples make this more apparent. Michael (9+) is catego-
 rized as below average by his teacher. He chose to write 18 - 9 in the
 standard vertical layout and, as is usual in the decomposition process, put a
 little 1 by the 8 like this:

 "This is the easy way of working it out. I can't take 9 from 8 but if I put a
 little 1 it makes it easier because now it's 9 from 18." He failed to realize

 that this is the same sum he started with, and after a considerable time try-
 ing to cope with this problem, he resorted to his more usual procedure for
 subtraction by placing 18 marks from left to right on his paper, then starting
 from the left and counting from one to nine as he crossed out 9 marks. He
 recounted the remaining marks from left to right to complete the correct
 solution by take-away.

 The less-able children are often placed in difficulties as they grow older
 because they feel pressure to conform and not use "baby" methods of
 counting.

 Jay (10+) solved the problem 5 - 4 by casually displaying five fingers on
 the edge of the desk and counted back, "five, ... four, three, two, one." At
 each count apart from the five he put slight pressure on each finger in
 sequence. The solution was provided by the last count in the sequence.
 When attempting 15 - 4 he wanted to use a similar method but had a prob-
 lem, declaring, "I'm too old for counters!" but neither did he want to be seen
 using his fingers, because "my class don't use counters or fingers." He felt
 he should operate in the same way as other children in his class (most of
 whom appeared to recall the basic facts from memory), yet he did not know
 the solutions and knew that he required a counting support. His use of fin-
 gers for obtaining solutions for number combinations was almost always
 covert. When dealing with combinations to 20 he combined a casual display
 of 10 splayed fingers on the edge of his desk with an imagined repetition of
 his fingers just off the desk. He spent a considerable time obtaining individ-
 ual solutions and had a tendency to be very cautious in giving responses. He
 used his imaginary fingers to attempt to find a solution to 15 - 9 by counting
 back. Eventually he became confused and couldn't complete the problem.

 Some of those deemed below average have been classified as using some
 derived facts. However, this may be accompanied by a display of fingers for
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 visual support, an action never performed by the above-average students.
 This was categorized as derived fact because there was no visible evidence
 of actual counting. The fingers needed to be held up for the number facts to
 be recalled from the finger layout.
 For instance, Karen (11+), the most successful of the below-average stu-

 dents, made considerable use of her fingers in an idiosyncratic inventive
 manner. To perform the calculation 15 - 9, she held out five fingers on her
 left hand and closed it completely; she then held up four fingers on her right
 hand, closed them and opened the right thumb, then redisplayed the five
 fingers of her left hand at the same time, and responded, "Six." The whole
 procedure took about 3 seconds.
 Her explanation showed a subtle understanding of number relationships

 (Figure 6).
 Nevertheless, the tortuous route that she followed showed that her inven-

 tiveness tended to relate to individual calculations and applied only to small
 numbers she could represent using her hands. Other below-average children
 who attempted to derive facts often had to do this on the basis of a limited
 number of known facts that might not furnish the most efficient way to per-
 form the calculation. For example, Michelle (aged 10+), faced with 16 - 3,
 said "10 from 16 leaves 6, 3 from 10 leaves 7, 3 and 7 makes 10 and anoth-
 er 3 is 13." Michelle seeks to find familiar number bonds to solve the

 problem. She sees 16 as 6 and 10, but takes the 3 from the 10 rather than
 from the 6 and ends up having to do the additional sum 6 and 7.

 Display Explanation to Calculate 15-9

 Left hand Right hand Child's explanation Interviewer's comment

 Fifteen is ten and Five fingers shown on left hand, (Other
 Stage 1 five. ten presumably held in mind.) Right

 Forget the ten. hand closed.

 - -, The child displays the nine to be
 Stage 2 taken away as a five and a four.

 The left hand is closed, to cancel the

 Stage 3 displayed five leaving the previously Stage 3 displayed four.

 Four from one of the The remaining four are taken from

 Stage 4 fives making ten one of the fives held in the mind.
 leaves one.

 One and the other Remaining five in mind now
 Stage 5 five from the ten displayed, giving a total of 5 and 1,

 make six. which is 6.

 Figure 6. Subtracting 9 from 15 by an inventive route.
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 THE PROCEPTUAL DIVIDE

 The more able children tend to display proceptual thinking, whereas the
 less able are more procedural. The characteristics of these two forms of
 thinking may be summarized as follows:

 1. Procedural thinking is characterized by a focus on the procedure and
 the physical or quasi-physical aids that support it. The limiting aspect of
 such thinking is the more blinkered view that the child has of the symbol-
 ism: numbers are used only as concrete entities to be manipulated through a
 counting process. The emphasis on the procedure reduces the focus on the
 relationship between input and output, often leading to idiosyncratic exten-
 sions of the counting procedure that may not generalize.

 2. Proceptual thinking is characterized by the ability to compress stages
 in symbol manipulation to the point where symbols are viewed as objects
 that can be decomposed and recomposed in flexible ways.

 Flexible strategies used by the more able students produce new known
 facts from old, giving a built-in feedback loop that acts as an autonomous
 knowledge generator. The least successful have only a procedure of count-
 ing, which grows ever more lengthy as the problems grow more complex. In
 between these extremes, the less able who do attempt to derive facts from a
 limited range of known facts may end up following an inventive but tortu-
 ous route that succeeds only with the greatest effort. The high sense of risk
 generated may then lead to such a child falling back on the security of
 counting. We therefore hypothesize that what might be a continuous spec-
 trum of performance tends to become a dichotomy in which those who
 begin to fail are consigned to become procedural. We believe that this
 bifurcation of strategy-between flexible use of number as object or
 process and fixation on procedural counting-is one of the most significant
 factors in the difference between success and failure. We call it the procep-
 tual divide.

 It is our contention that whereas more able younger children evoke pro-
 ceptual thinking to use the few combinations already known to establish
 more, less able children remain concerned with the procedures of counting
 and apply their efforts to developing competence with them. Procedural
 thinking in the context of developing competency with the number combi-
 nations can give guaranteed success and efficiency within a limited range of
 problems. But this efficiency with small numbers is unlikely to lead to suc-
 cess with more complex problems as the children grow older. Their
 persistence in emphasizing procedures leads many children inexorably into
 a cul-de-sac from which there is little hope of future development.

 Figures 7 and 8 illustrate the divergence in strategy between the more and
 less able in the study. They pair age groups together, 2 years at a time to
 give more viable group sizes, to allow a more detailed analysis of the data
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 in Figures 4 and 5. Combinations are arranged in order of difficulty, estab-
 lished by considering the overall percentage of children within the sample
 who responded to individual combinations through the use of known facts.
 The three main groupings correspond to the categories previously consid-
 ered in Figures 4 and 5.

 Lower Age Group of Children 7+ and 8+

 Category A addition Category B addition Category C addition
 5+0 0+2 4+4 2+1 8+2 6+3 7+2 4+5 3+5112+110+2 18+2 14+4 3+1615+413+5 8+6 4+7 9+8

 20
 Percentage
 of children 40 Above-
 mai ua 60 - averag of pu use 60 - I-
 strategies 80 N=8

 100

 80- Below-

 60 average
 ability

 40 N=8
 20

 5+0 0+2 4+4 2+1 8+2 6+3 7+2 4+5 3+5 12+110+2 18+2 14+4 3+1615+413+5 8+6 4+7 9+8

 Category A addition I Category B addition I Category C addition

 Middle Age Group of Children 9+ and 10+

 Category A addition Category B addition I Category C addition

 5+0 0+2 4+4 2+1 8+2 6+3 7+2 4+5 3+4512+110+2 18+2 14+4 3+1615+413+ 8+6 4+7 9+8 0

 Percentage 20
 of children

 making use 40 - -Above-
 of particular 60 average
 strategies 80 ability

 N=8

 100 -

 Below-
 60 average
 40 ability

 N=8

 0-

 5+0 0+2 4+4 2+1 8+2 6+3 7+2 4+5 3+5 12+110+2 18+214+4 3+1615+413+518+6 4+7 9+8
 Category A addition Category B addition i Category C addition

 Upper Age Group of Children 11+ and 12+

 Category A addition I Category B addition I Category C addition
 0 5+0 0+2 4+4 2+1 8+2 6+3 7+2 4+5 3+5 12+110+2 18+2 14+4 3+1615+413+58+6 4+7 9+8

 Percentage 20
 of children

 making use 40 Above-
 of particular 60 average
 strategies I ability
 80 N=8
 100

 80

 60 Below-
 60 -average
 40 ability
 20 N=7
 0

 5+0 0+2 4+4 2+1 8+2 6+3 7+2 4+5 3+5112+110+2 18+2 14+4 3+1615+413+518+6 4+7 9+8

 Category A addition Category B addition I Category C addition

 Known facts M Derived facts= Count-on Count-all Errors

 Figure 7. Diverging approaches to basic addition combinations, with age and ability comparisons.
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 Lower Age Group of Children 7+ and 8+

 Category A subtraction I Category B subtraction 1 Category C addition

 6-0 3-3 5-4 3-2 6-3 9-8 8-2 9-5 7-5 13-2 15-4 16-3 18-9 15-9 12-8 16-10 17-13 19-17
 Percentage0
 of children 20 Above-
 making use 40 average
 of particular 40 I aer
 strategies 60 -N=I

 80

 100

 80 Below-
 60average

 40 N-

 20

 6-0 3-3 5-4 3-2 6-3 9-8 8-2 9-5 7-5 13-2 15-4 16-3 18-9 15-9 12-8 16-10 17-13 19-17

 Category A subtraction i Category B subtraction i Category C subtraction

 Middle Age Group of Children 9+ and 10+

 Category A subtraction I Category B subtraction Category C addition

 06-0 3-3 5-4 3-2 6-3 9-8 8-2 9-5 7-5 113-2 15-4 16-3 1-9 15-9 12-8 11-10 17-13 19-17
 Percentage
 of children 20
 making use 40 Above-
 of particular average
 strategies 60 ability

 80

 100

 80

 60Below-
 average

 40 ability
 20

 6-0 3-3 5-4 3-2 6-3 9-8 8-2 9-5 7-5 113-2 15-4 16-3 18-9 15-9 12-8 16-10 17-13 19-17

 Category A subtraction Category B subtraction I Category C subtraction

 Upper Age Group of Children 11+ and 12+

 Category A subtraction Category B subtraction i Category C addition
 6-0 3-3 5-4 3-2 6-3 9-8 8-2 9-5 7-5 113-2 15-416-3 18-9 15-9 12-8 16-10 17-13 19-17

 Percentage 20
 of children Above-
 making use 40 average
 of particular aility
 strategies 60

 80

 100

 80

 60 - Below-
 average

 20

 6-0 3-3 5-4 3-2 6-3 9-8 8-2 9-5 7-5 113-2 15-4 16-3 18-9 15-9 12-8 16-10 17-13 19-17

 Category A subtraction I Category B subtraction I Category C subtraction

 Known facts E Derived facts -I Count-up/Count-back Take-away Errors g

 Figure 8. Diverging approaches to basic subtraction combinations, with age and ability comparisons.

 The graphs not only starkly illustrate differences between the below-aver-
 age and the above-average children but also how combinations evoke
 particular responses. Note how combinations involving single digits and a
 sum between 10 and 20 evoke the use of derived facts by the upper age
 group of 11- and 12-year-olds. Note also how the extensive use of proce-
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 dural methods among the youngest below-average group to obtain solutions
 to number combinations to 10 fails to provide them with a means of obtain-
 ing solutions to harder problems.
 See how above-average students make use of very few known facts to

 establish solutions through the use of derived facts. For instance, "6 - 3 is 3
 because two threes are six"; "4 + 7 is 11 because 3 and 7 is 10"; "18 - 9 is 9
 because 9 x 2 is 18"; "8 + 6 is 14 because two 7s are 14." Simpler facts
 become known facts (or perhaps instantaneous derived facts). Harder com-
 binations are less often committed to memory, perhaps because the more
 able realize that it is just as efficient to derive them when required.

 Note that even when below-average children know a substantial number
 of facts they make very little use of derived solutions. Contrast the efficient
 solution to 8 + 6 above with a solution derived by a less able child. Stuart
 (aged 10+) responded to this problem by saying, "I know 8 and 2 is 10, but
 I have a lot of trouble taking 2 from 6. Now 8 is 4 and 4; 6 and 4 is 10; and
 another 4 is 14." We may feel we should congratulate Stuart for the breadth
 of arithmetical manipulation that he displays, but the truth of the matter is
 that his particular approach indicates not so much what he knows as what
 he does not know. He knows number combinations that make 10 but in this

 context has difficulty with 6 - 2! His idiosyncratic methods of solution
 place a severe burden of inventiveness on him to solve arithmetic problems.
 It may in the long term prove too great a burden to bear.

 THE CUMULATIVE EFFECT OF THE PROCEPTUAL DIVIDE

 Proceptual encapsulation occurs at various stages throughout mathemat-
 ics: repeated counting becoming addition, repeated addition becoming
 multiplication, and so on, giving what is usually considered by mathematics
 educators a complex hierarchy of relationships (Figure 9).
 The less able child who is fixed in process can only solve problems at the

 next level up by coordinating sequential processes. This is, for them, an
 extremely difficult process. If they are faced with a problem two levels up,
 then the structure will almost certainly be too burdensome for them to sup-
 port (see Linchevski & Sfard, 1991). Multiplication facts are almost
 impossible for them to coordinate while they are having difficulty with
 addition. Even the process of reversing addition to give subtraction is seen
 by them as a new process (count-back instead of count-up).

 The more able, proceptual thinker is faced with an easier task. The sym-
 bols for sum and product again represent numbers. Thus counting, addition,
 and multiplication are operating on the same procept, which can be decom-
 posed into process for calculation purposes whenever desired. A proceptual
 view that amalgamates process and concept through the use of the same
 notation therefore collapses the hierarchy into a single level in which arith-
 metic operations (processes) act on numbers (procepts) (Figure 10).
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 process of
 repeated product
 addition

 process of concept conceptof

 counting on sum

 process of concept of
 counting > ( number

 Figure 9. Higher-order encapsulations.

 4/, )0/0,
 0'b0/% 0/-

 concept of conceptof conceptof
 number sum product

 procept of number

 Figure 10. Collapse of hierarchy into operations on numbers.

 We hypothesize that this is the development by which a more able thinker
 develops a flexible relational understanding in mathematics, which is seen
 as a meaningful relationship between notions at the same level, whereas the
 less able are faced with a hierarchical ladder that is more difficult to climb.
 We contend that children across a wide spectrum of performance face this
 challenge at each stage of encapsulation and that at each stage more chil-
 dren fail.
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 This provides an insight into why the practicing expert sees mathematics
 as such a simple subject and may find it difficult to appreciate the difficul-
 ties faced by the novice. As Thurston indicated in our earlier quotation, it is
 the compression of mathematical ideas that makes them so simple. As pro-
 ceptual thinking grows in conceptual richness, procepts can be manipulated
 as simple symbols at a higher level or opened up to perform computations,
 to be decomposed and recomposed at will. Such forms of thinking become
 entirely unattainable for the procedural thinker who fails to develop a rich
 proceptual structure.
 For unto everyone that hath shall be given and he shall have abundance:

 but from him that hath not shall be taken even that which he hath (Matthew,
 25:29).

 EXAMPLES FROM OTHER AREAS OF MATHEMATICS

 Our empirical evidence in this paper has concentrated on simple arith-
 metic. However, other research can also be reinterpreted in proceptual
 terms. We have evidence that the lack of formation of the procept for an
 algebraic expression causes difficulties for pupils who see the symbolism
 representing only a general procedure for computation: an expression such
 as 2 + 3x may be conceived as a process that cannot be carried out because
 the value of x is not known (Tall & Thomas, 1991). We have evidence that
 the conception of a trigonometric ratio only as a process of calculation
 (opposite over hypotenuse) and not a flexible procept causes difficulties in
 trigonometry (Blackett, 1990; Blackett & Tall, 1991). In both of these cases
 we have evidence that the use of the computer to carry out the process, thus
 enabling the learner to concentrate on the product, significantly improves
 the learning experience. The difference between ratio and rate also has an
 obvious interpretation in terms of procept, where ratio is a process and rate
 the mathematical object produced by that process.

 The case of the function concept, where f(x) in traditional mathematics rep-
 resents both the process of calculating a specific value of x and the concept of
 function for general x, is another example where the method of conceiving a
 function as an encapsulated object causes great difficulty (Sfard, 1989).
 There is evidence (Schwingendorf, Hawks, & Beineke, 1992) that the pro-
 gramming of the function as a procedure whose name may also be used as an
 object significantly improves understanding of function as a procept.
 The limit concept is also a procept, but of a subtly different kind. The

 symbolism for limit represents both the process of tending to a limit, "as

 n---oo so sn---s" or " lim Sn = s," and the value of the limit "s = lim sn." As n - oo n --oo

 Cornu (1981, 1983) showed, this causes a problem for students because
 there is no explicit procedure to calculate the limit; instead, it has to be
 computed by indirect means using general theorems on limits that may not
 be adequate to compute the precise value.
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 We therefore are confident that the notion of procept, with its ability to
 evoke process or product, offers an insightful analysis of success and fail-
 ure in the process of learning mathematics. The subject has a spiraling
 complexity that more successful students compress by using symbols both
 as manipulable objects and as triggers to evoke mathematical processes.
 Meanwhile the less successful students eventually become trapped in proce-
 dural cul-de-sacs as the subject-for them-grows ever more complex.
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